चांद पर दोबारा उतरने की कवायद – प्रदीप

आर्टेमिस मिशन के ज़रिए नासा इंसानों को एक बार फिर चांद पर उतारने की योजना बना रहा है। हाल ही में अपोलो-11 चंद्र लैंडिंग की 53वीं वर्षगांठ के अवसर पर नासा के एक्सप्लोरेशन सिस्टम डेवलपमेंट मिशन निदेशालय के सह-प्रशासक जिम फ्री ने बताया है कि आर्टेमिस-I मेगा मून रॉकेट जल्द ही लांच किया जा सकता है। आर्टेमिस-I एक मानव रहित मिशन होगा। यह मिशन आर्टेमिस कार्यक्रम के प्रारंभिक परीक्षण के तौर पर चांद पर जाएगा और फिर वापस धरती पर लौट आएगा। आर्टेमिस मिशन के ज़रिए नासा 2025 तक इंसानों को एक बार फिर चांद पर उतारने के अपने लक्ष्य को पूरा करना चाहता है। इस मिशन के तहत एक महिला भी चांद पर जाएगी, जो चांद पर जाने वाली विश्व की पहली महिला बनेगी।

आर्टेमिस मिशन अंतरिक्ष अन्वेषण के क्षेत्र में एक नए युग की शुरुआत करेगा। नासा का कहना है कि भले ही यह मिशन चांद से शुरू होगा पर यह निकट भविष्य के मंगल अभियानों के लिए भी वरदान सिद्ध होगा क्योंकि चांद पर जाना, मंगल पर पहुंचने से पहले आने वाला एक बेहद अहम पड़ाव है। दरअसल, नासा चांद को मंगल पर जाने के लिए एक लांच पैड की तरह इस्तेमाल करना चाहता है।

रणनीतिक और सामरिक महत्व के चलते चांद पर जाने की होड़ एक नए सिरे से शुरू हो चुकी है। जो भी देश चांद पर सबसे पहले कब्जा करेगा उसका अंतरिक्ष विज्ञान के क्षेत्र में दबदबा बढ़ेगा। चंद्रमा की दुर्लभ खनिज संपदा, खासकर हीलियम-3, ने भी इसे सबका चहेता बना दिया है। अमेरिका के अलावा रूस, जापान, दक्षिण कोरिया और भारत भी 2022-23 में अपने चंद्र अन्वेषण यान भेजने वाले हैं। यही नहीं, कई निजी कंपनियां चांद पर सामान व उपकरण पहुंचाने और प्रयोगों को गति देने के उद्देश्य से सरकारी अंतरिक्ष एजेंसियों के ठेके हासिल करने की कतार में खड़ी हैं।

भारत के चंद्रयान-2 मिशन के विफल होने के बाद, भारत 2023 की पहली तिमाही में चंद्रयान-3 मिशन के तहत दोबारा लैंडर और रोवर चांद पर भेजने की योजना बना रहा है। चंद्रयान-2 मिशन के सबक के आधार पर चंद्रयान-3 मिशन की तैयारी की गई है। चंद्रयान-2 के दौरान लांच किए गए ऑर्बाइटर का उपयोग भी किया जाएगा।

चांद पर जाने की तैयारी में विभिन्न देशों की सरकारी और निजी स्पेस एजेंसियां पूरे दमखम के साथ जुटी हैं। दक्षिणी कोरिया अगले महीने अपना पहला ‘कोरिया पाथफाइंडर ल्यूनर ऑर्बाइटर मिशन’ भेजेगा। यह ऑर्बाइटर चंद्रमा की भौगोलिक और रासायनिक संरचना का अध्ययन करेगा। इसी साल रूस भी अपने लैंडर लूना-25 को चांद की सतह पर उतारने की तैयारियों में जुटा हुआ है। गौरतलब है कि पिछले 45 वर्षों में यह चांद की ओर रूस का पहला मिशन होगा। इनके अलावा जापान भी अगले साल अप्रैल में चांद पर अपना स्मार्ट लैंडर उतारने की तैयारी कर रहा है। दुनिया भर के देशों में चांद को लेकर एक होड़-सी लगी दिखती है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://media.nature.com/lw800/magazine-assets/d41586-022-01253-6/d41586-022-01253-6_20388608.jpg

आकाशगंगा का सबसे सटीक नक्शा तैयार – प्रदीप

म अपनी कोरी आंखों से जितने भी ग्रहों, तारों एवं तारासमूहों को देख सकते हैं, वे सभी एक अत्यंत विराट योजना के सदस्य हैं, जो आकाश में उत्तर से दक्षिण तक फैला हुई नदी के समान प्रवहमान प्रतीत होती है। यह ‘आकाशगंगा’ है। हमारा सूर्य और उसका परिवार यानी सौरमंडल जिस निहारिका के सदस्य हैं उसका नाम आकाशगंगा है।

आकाशगंगा में 100 अरब से भी ज़्यादा तारे हैं। हमारा सूर्य आकाशगंगा के केंद्र से लगभग 27,000 प्रकाश वर्ष दूर एक किनारे पर स्थित है। इसलिए पृथ्वी से देखने पर आकाशगंगा तारों के एक सघन पट्टे के रूप में दिखाई देती है। चूंकि हम आकाशगंगा के भीतर ही स्थित हैं, इसलिए हम इसकी आकृति का सटीक अनुमान नहीं लगा पाए हैं। हम आकाशगंगा के 90 प्रतिशत हिस्से को नहीं देख सकते। इसके बारे में हम जो कुछ भी जानते हैं, वह ब्रह्मांड की हज़ारों अन्य निहारिकाओं की संरचना के अध्ययन और अप्रत्यक्ष खगोलीय प्रेक्षणों पर आधारित है।

हाल ही में युरोपीय स्पेस एजेंसी ने गेइया मिशन के अंतर्गत आकाशगंगा का अब तक का सबसे बड़ा और सबसे सटीक त्रि-आयामी नक्शा जारी किया है। यह नक्शा खगोल विज्ञानियों को आकाशगंगा के अरबों तारों, ग्रहों, क्षुद्रग्रहों, उल्काओं आदि की सटीक स्थिति तो बताएगा ही, साथ ही इससे इन खगोलीय पिंडों की आगे की गति को भी ट्रैक करने में मदद मिलेगी। यह हमें हमारी निहारिका के अतीत के बारे में बता सकता है; जैसे कि कौन से तारे अन्य निहारिकाओं से आए होंगे और अतीत में हमारी अपनी निहारिका (आकाशगंगा) में विलीन हो गए होंगे। गेइया मिशन ने आकाशगंगा में कम से कम दो अरब खगोलीय पिंडों की पहचान की है और आकाशगंगा के बाहर लगभग 29 लाख नई निहारिकाओं की शिनाख्त की है। इसकी मदद से खगोल विज्ञानी लगभग 3.30 करोड़ तारों की गति निर्धारित कर पाए हैं और यह पता लगा पाए हैं कि वे हमारे सौरमंडल के नज़दीक आ रहे हैं या उससे दूर भाग रहे हैं। इसके अलावा 1,56,000 क्षुद्र ग्रहों की सटीक कक्षाएं भी निर्धारित की गई हैं।

विज्ञानियों ने आकाशगंगा को सर्पिल निहारिका (स्पाइरल गैलेक्सी) की श्रेणी में रखा है। अधिकांश पाठ्य पुस्तकों और विज्ञान की लोकप्रिय पुस्तकों में आकाशगंगा को एक सपाट तश्तरीनुमा सर्पिल संरचना के रूप में दिखाया जाता है। लेकिन गेइया मिशन के नए थ्री-डी नक्शे ने इसके समतल या सपाट होने सम्बंधी धारणा को चुनौती दी है। नए डैटा के मुताबिक आकाशगंगा ऊपर और नीचे के घुमावदार किनारों के साथ काफी विकृत है। सपाट तश्तरीनुमा आकृति बनाने की बजाय आकाशगंगा के तारे एक ऐसी तश्तरी बनाते हैं जो किनारों पर मुड़ जाती है, कुछ-कुछ अंग्रेजी के अक्षर ‘एस’ (S) की तरह।

गेइया मिशन के अंतर्गत प्राप्त डैटा को खगोल विज्ञानी बेहद सटीक मान रहे हैं क्योंकि गेइया टेलीस्कोप को अब तक की सबसे व्यापक कवरेज रेंज हासिल है। इतनी रेंज किसी भी टेलीस्कोप के पास नहीं है। यह आकाशगंगा को दिक् और वेग के छह आयामों में खंगालने में सक्षम है। तारों की स्थिति, गति और तेजस्विता को मापने के अलावा, गेइया ने अन्य पिंडों की एक विशाल शृंखला पर डैटा इकट्ठा किया है। गेइया के डैटा के बिना सभी तारे एक जैसी टिमटिमाती रोशनी भर हैं, इसके डैटा की बदौलत यह पता चलता है कि इनमें कितनी विविधता है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://akm-img-a-in.tosshub.com/indiatoday/images/story/202206/Milky_way_7.jpg?Dt926rlLILb5rPlJHF.s6oR7NKvx2TPx&size=770:433

भारत का पहला तरल दर्पण टेलीस्कोप

हाल ही में भारत में एक अनोखा टेलीस्कोप तैयार किया गया है जिसमें ठोस दर्पण के बजाय घूर्णन करता तरल पारा उपयोग किया गया है। हालांकि इस तरह के टेलीस्कोप पहले भी बनाए जा चुके हैं लेकिन खगोल विज्ञान को समर्पित 4-मीटर चौड़ा इंटरनेशनल लिक्विड मिरर टेलीस्कोप (आईएलएमटी) पहली बार तैयार किया गया है। इसे हिमालय में 2450-मीटर ऊंचाई पर नैनीताल के समीप स्थित देवस्थल वेधशाला में स्थापित किया गया है।

गौरतलब है कि लगभग 15 करोड़ रुपए की लागत का यह टेलीस्कोप बेल्जियम, कनाडा और भारत द्वारा संयुक्त रूप से तैयार किया गया है। यह कांच वाले टेलीस्कोप की तुलना में बहुत सस्ता है। इसी टेलीस्कोप के नज़दीक बेल्जियम की एक कंपनी द्वारा 3.6 मीटर चौड़ा स्टीयरेबल देवस्थल ऑप्टिकल टेलीस्कोप (डीओटी) भी स्थापित किया गया है जिसकी लागत लगभग 140 करोड़ रुपए है। खगोलविदों के अनुसार तरल दर्पण चंद्रमा पर एक विशाल टेलीस्कोप स्थापित करने के लिए सबसे बेहतरीन तकनीक है जिससे दूरस्थ ब्रह्मांड को देखा जा सकेगा।        

इस प्रकार के टेलीस्कोप में एक कटोरे के आकार के उपकरण में पारे को घुमाया जाता है। इस प्रक्रिया में गुरुत्वाकर्षण और अपकेंद्री बल का मिला-जुला असर तरल को एक पारंपरिक टेलीस्कोप दर्पण के समान आदर्श परावलय आकार में परिवर्तित कर देता है। इसमें कांच का दर्पण बनाने, उसकी सतह को घिसकर परावलय आकार देने और एल्युमिनियम की परावर्तक परत बनाने का खर्च भी नहीं होता है।

आईएलएमटी की कल्पना 1990 के दशक के अंत में की गई थी। हालांकि भारत में इस टेलीस्कोप के पुर्जे 2012 में लाए गए थे लेकिन निर्माण में काफी विलंब हुआ। इस दौरान शोधकर्ताओं ने पाया कि उनके पास पर्याप्त पारा भी नहीं है। फिर कोविड-19 महामारी ने यात्रा करना मुश्किल कर दिया। आखिरकार इस वर्ष अप्रैल में टीम ने 50 लीटर पारे को सेट करके 3.5 मि.मी. परावलय परत का निर्माण किया।

सीधे ऊपर की ओर देखने पर यह घूमता आईना लगभग चंद्रमा जितने चौड़े आकाश का दर्शन कराएगा और पृथ्वी के घूर्णन के चलते सुबह से शाम तक पूरे आकाश पर बारीकी से नज़र रखी जा सकेगी। इसके द्वारा बनाई गई छवियां लंबी धारियों के रूप में दिखाई देंगी जिनके अलग-अलग पिक्सेल को जोड़कर एक लंबे एक्सपोज़र से प्राप्त छवि का निर्माण किया जा सकेगा।

यह टेलीस्कोप रात-दर-रात आकाश की एक ही पट्टी को दिखाएगा, ऐसे में कई रातों के एक्सपोज़र को एक साथ जोड़कर धुंधली वस्तुओं की स्पष्ट छवियां प्राप्त की जा सकती हैं।

वैकल्पिक रूप से, रात-दर-रात हो रहे परिवर्तनों को भी देखा जा सकता है। इसमें सुपरनोवा, क्वाज़र और दूरस्थ निहारिकाओं में उपस्थित ब्लैक होल वगैरह पर भी नज़र रखी जा सकेगी। हालांकि खगोल शास्त्रियों की अधिक रुचि गुरुत्वाकर्षण लेंस की खोज करना है जिसमें गुरुत्वाकर्षण के कारण एक या अनेक निहारिका समूह प्रकाश को विकृत कर देते हैं। आईएलएमटी की मदद से किसी खगोलीय वस्तु की चमक के आधार पर निहारिका-लेंसों के द्रव्यमान और ब्रह्मांड के फैलाव की दर पता लगाई जा सकती है। एक अनुमान के अनुसार आईएलएमटी की आकाशीय पट्टी में 50 ऐसे गुरुत्व लेंस दिखाई दे सकते हैं।         

वैसे तो कई और पारंपरिक सर्वेक्षण टेलीस्कोप आकाश का अध्ययन कर रहे हैं लेकिन परिवर्तनों को देखने के लिए प्रत्येक रात एक ही पैच पर लौटना उनके लिए संभव नहीं है। ऐसे में डीओटी और आईएलएमटी की समन्वित शक्ति से किसी भी खगोलीय वस्तु की जांच करना अब मुश्किल नहीं है।

यदि आईएलएमटी तकनीक सफल होती है तो इसे और अधिक विकसित कर चंद्रमा पर स्थापित किया जा सकता है। विशेषज्ञों के अनुसार चंद्रमा पर पृथ्वी की तुलना में गुरुत्वाकर्षण बल कम है और वहां वातावरण भी नहीं है इसलिए भविष्य के टेलीस्कोप स्थापित करने के लिए वह उचित स्थान है।

गौरतलब है कि पृथ्वी पर कोरियोलिस प्रभाव के कारण 8 मीटर से बड़े दर्पणों में पारे की गति प्रभावित हो सकती है जबकि चंद्रमा के घूर्णन की गति कम होती है जिससे अधिक बड़े दर्पणों को स्थापित करने में कोई समस्या नहीं होगी। लेकिन इतना वज़न चंद्रमा पर ले जाना मुश्किल है। और वहां रात के समय पारा जम जाएगा और दिन में वाष्पित होता रहेगा। लेकिन हलके पिघले हुए लवण का हिमांक बिंदु कम होता है जो चंद्रमा के वातावरण में भी काम कर सकता है। इसे चांदी के वर्क की मदद से परावर्तक बनाया जा सकता है।    

2000 के दशक में नासा और कैनेडियन स्पेस एजेंसी ने लूनर तरल दर्पण का अध्ययन शुरू किया था जो किसी निष्कर्ष पर नहीं पहुंच सका। लेकिन हाल ही में चंद्रमा में बढ़ती रुचि के चलते इस तकनीक पर फिर से अध्ययन किया जा सकता है। 2020 में 100-मीटर तरल दर्पण का प्रस्ताव रखा गया था जो चंद्रमा के किसी एक ध्रुव से आकाश के एक टुकड़े पर कई वर्षों तक नज़र रखेगा और निहारिकाओं के बारे में उपयोग जानकारी उपलब्ध कराएगा। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://cdn.mos.cms.futurecdn.net/ktwjq8T3khZaEZAMwATaxj-970-80.jpg.webp

सबसे दूर स्थित मंदाकिनी की खोज – प्रदीप

ब्रह्मांड की गुत्थियों को सुलझाने में जुटे खगोल शास्त्रियों की एक अंतर्राष्ट्रीय टीम ने हाल ही में अब तक की सबसे दूर स्थित मंदाकिनी को खोजने का दावा किया है। धरती से तकरीबन 13.5 अरब प्रकाश वर्ष की दूरी पर स्थित इस मंदाकिनी को खोजकर्ताओं ने एचडी1 नाम दिया है। यह अब तक खोजी गई सबसे दूर स्थित मंदाकिनी जीएन-ज़ेड11 से भी 10 करोड़ प्रकाश वर्ष ज़्यादा दूर है। इस खोज के नतीजे दी एस्ट्रोफिज़िकल जर्नल में प्रकाशित किए गए हैं।

इस मंदाकिनी से हम तक पहुंचने वाला प्रकाश तब निकला था जब ब्रह्मांड महज 30 करोड़ साल पुराना था। यह 13.8 अरब वर्ष पहले हुए बिग बैंग के बाद अस्तित्व में आने वाली शुरुआती मंदाकिनियों में से एक है जो ब्रह्मांड की उत्पत्ति व विकास को लेकर हमारी मौजूदा समझ को भी बदल सकती है।

वैज्ञानिकों के मुताबिक एचडी1 मंदाकिनी इतनी पुरानी और दूर है कि इसमें सिर्फ धूल और गैस के गुबार ही दिखाई देते हैं। शुरुआती ब्रह्मांड में चारों ओर धूल और गैस ही बिखरी हुई थी। बिग बैंग के कुछ करोड़ सालों के बाद ही ब्रह्मांड की शुरुआती मंदाकिनियां बनी थीं। ये मंदाकिनियां आकार-प्रकार में हमारी मंदाकिनी (आकाशगंगा) से हज़ारों गुना ज़्यादा विशाल थीं। इन शुरुआती मंदाकिनियों का मूल काम आज की मंदाकिनियों के निर्माण का था। इसलिए आज ब्रह्मांड में मौजूद समस्त मंदाकिनियां इन्हीं शुरुआती मंदाकिनियों से बनी हुई हैं और हमारी आकाशगंगा भी संभवत: इन्हीं से बनी हुई हो।

हारवर्ड एंड स्मिथसोनियन सेंटर फॉर एस्ट्रोफिज़िक्स के वरिष्ठ खगोल-भौतिकविद फैबियो पैकूची के मुताबिक एचडी1 पराबैंगनी प्रकाश में बेहद चमकीली दिखाई देती है। इससे अनुमान लगाया जा सकता है कि वहां कुछ ऊर्जावान प्रक्रियाएं हो रही हैं या फिर अरबों साल पहले हो चुकी हैं।

शुरू में खगोलशास्त्रियों को लगा कि एचडी1 बेहद अधिक रफ्तार से तारों का निर्माण कर रही स्टारबर्स्ट मंदाकिनी है। गणना करने पर पता चला कि एचडी1 हर साल 100 से ज़्यादा तारों का निर्माण कर रही थी। यह सामान्य स्टारबर्स्ट मंदाकिनियों की तुलना में भी 10 गुना अधिक है। तब खगोल शास्त्रियों की टीम को संदेह हुआ कि एचडी1 रोज़ाना सामान्य रूप से तारों का निर्माण नहीं कर रही है। एचडी1 से हम तक आने वाला प्रकाश भी दुविधा में डालने वाला है।

खगोल शास्त्रियों की टीम ने इस खोज को लेकर दो संभावनाएं प्रस्तुत की हैं। पहला यह कि संभवत: एचडी1 आश्चर्यजनक दर से तारों का निर्माण कर रही है और हो सकता है कि ये ब्रह्मांड के उन शुरुआती तारों में से हो, जिन्हें अब तक नहीं देखा गया था। दूसरा यह कि एचडी1 के अंदर सूर्य के द्रव्यमान का लगभग 10 करोड़ गुना बड़ा अतिविशाल ब्लैक होल हो सकता है। लेकिन, अगर इस मंदाकिनी में ब्लैक होल हुआ तो यह ब्रह्मांड के उन मॉडल्स के लिए चुनौती वाली जानकारी होगी जो ब्लैक होल के निर्माण और विकास की व्याख्या करते हैं। क्योंकि उनकी व्याख्या के उलट इस अतिविशाल ब्लैक होल का निर्माण व विकास ब्रह्मांड के विकास के इतिहास में बहुत ही जल्दी हो गया होगा। बिग बैंग के तुरंत बाद इतने विशाल ब्लैक होल का बनना ब्रह्मांड सम्बंधी हमारे वर्तमान मॉडल के लिए एक चुनौती है।

हालांकि अगर हम यह मान लें कि एचडी1 ब्रह्मांड में बनने वाले शुरुआती तारों या ‘पॉपुलेशन 3’ के वर्ग का है तो इसके गुणों को ज़्यादा आसानी से समझाया जा सकता है। ब्रह्मांड में बनने वाले तारों की पहली आबादी वर्तमान तारों की तुलना में अधिक विशाल, अधिक चमकदार और गर्म थी। वास्तव में पॉपुलेशन 3 के तारे सामान्य तारों की तुलना में अधिक प्रकाश उत्पन्न करने में सक्षम होते हैं। हो सकता है कि इसी वजह से एचडी1 पराबैंगनी प्रकाश में ज़्यादा तेज़ी से चमक रही हो।

पैकूची के अनुसार इतनी दूर स्थित स्रोत की प्रकृति के सवालों का सही जवाब देना चुनौतीपूर्ण काम है। यहां तक कि अत्यधिक चमकीले पिंड क्वासर्स का प्रकाश भी इतनी लंबी यात्रा के बाद इतना धुंधला हो जाता है कि हमारी शक्तिशाली दूरबीनों को भी उस पकड़ने में बहुत कठिनाई होती है। शुरुआती ब्रह्मांड के पिंडों की पड़ताल करना बहुत ही मुश्किल काम है।

एचडी1 को सुबारू दूरबीन, विस्टा दूरबीन, यूके इन्फ्रारेड दूरबीन और स्पिट्ज़र अंतरिक्ष दूरबीन का इस्‍तेमाल करके लगभग 1200 घंटे के अवलोकनों के बाद खोजा गया। खगोल शास्त्रियों का कहना है कि सात लाख खगोलीय पिंडों के बीच में एचडी1 की खोज करना बहुत चुनौतीपूर्ण काम था। जेम्स वेब अंतरिक्ष दूरबीन का इस्तेमाल करते हुए खगोलशास्त्रियों की टीम जल्दी ही एक बार फिर से धरती से दूरी की पुष्टि करने के लिए एचडी1 का अवलोकन करेगी। अगर मौजूदा गणना सही साबित होती है, तो एचडी1 अब तक रिकॉर्ड की गई सबसे दूर स्थित और सबसे पुरानी मंदाकिनी होगी। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Three-color_image_of_galaxy_HD1.jpg/1024px-Three-color_image_of_galaxy_HD1.jpg

चिंता का सबब बना अंतरिक्ष में फैला कचरा – प्रदीप

बीते दिनों गुजरात, मध्य प्रदेश और महाराष्ट्र के कई इलाकों में आसमान से आग के गोले गिरते दिखाई दिए थे। कई जगह पर ठोस रूप में इन्हें धरती पर गिरते हुए भी देखा गया। इस तरह की आसमानी घटनाओं के संदर्भ में वैज्ञानिकों का कहना है कि यह अंतरिक्ष का कचरा या मलबा हो सकता है। अगर यह मलबा ज़्यादा बड़े आकार का होता और किसी आवासीय क्षेत्र में गिरता तो जानमाल को भी भारी नुकसान पहुंचा सकता था।

दरअसल अंतरिक्ष में एकत्रित हो रहा मलबा भविष्य में धरती पर रह रहे लोगों के साथ-साथ यहां सक्रिय तमाम उपग्रहों, अंतरिक्ष यात्रियों और अंतरिक्ष स्टेशनों के लिए भी बेहद घातक साबित हो सकता है। इतना ही नहीं, इससे हमारी संचार व्यवस्था के भी प्रभावित होने की आशंका पैदा हो सकती है। ऐसे में जिस तरह से आज आधुनिक तकनीक आधारित तमाम गैजेट्स हमारी दिनचर्या का हिस्सा बन गए हैं, उससे अलग तरह के नुकसान की आशंका भी हो सकती है।

यदि हम अंतरिक्ष में मौजूद तमाम मानव जनित पदार्थों की बात करें तो एक अनुमान के मुताबिक छोटे-बड़े मिलाकर लगभग 17 करोड़ पुराने रॉकेट और बेकार हो चुके उपग्रहों के टुकड़े आठ किलोमीटर प्रति सेकेंड की रफ्तार से पृथ्वी की कक्षा में चक्कर लगा रहे हैं। आपस में टक्कर होने से ये और भी छोटे टुकड़ों में बंट रहे हैं जिससे इनकी संख्या में दिनों-दिन बढ़ोतरी हो रही है।

ब्रिटिश खगोल विज्ञानी रिचर्ड क्राउटडर के अनुसार इस सम्बंध में सबसे बड़ी समस्या यह है कि पृथ्वी से लगभग 36 हज़ार किलोमीटर ऊपर की भू-स्थैतिक कक्षा में अंतरिक्ष कचरे के जमघट और आपसी टक्कर के परिणामस्वरूप दुनिया की संचार व्यवस्था भी चौपट हो सकती है। इसका अंदाज़ा इसी बात से लगाया जा सकता है कि अंतरिक्ष में आठ किलोमीटर प्रति सेकंड की रफ्तार से चक्कर काट रहे सिक्के के आकार की किसी वस्तु से किसी दूसरे सिक्के के आकार वाली वस्तु की टकराहट होती है तो उससे वैसा ही प्रभाव होगा जैसा धरती पर लगभग सौ किलोमीटर की रफ्तार से चल रही दो बसों की टक्कर से होता है। अंतरिक्ष में तैरते कचरे से टकराने पर अंतरिक्ष यान और सक्रिय उपग्रह नष्ट हो सकते हैं। इसके साथ ही, धरती पर इंटरनेट, जीपीएस, टेलीविज़न प्रसारण जैसी अनेक आवश्यक सेवाएं भी बाधित हो सकती हैं।

अंतरिक्ष में मानवीय दखल का इतिहास कोई बहुत पुराना नहीं है। महज छह दशक पहले ही पहली बार इंसान ने अंतरिक्ष में अपनी उपस्थिति दर्ज थी। उल्लेखनीय है कि अक्टूबर 1957 में तत्कालीन सोवियत संघ द्वारा अंतरिक्ष में भेजे गए पहले मानव निर्मित सेटेलाइट स्पुतनिक-1 के बाद से हज़ारों रॉकेट, सेटेलाइट, स्पेस प्रोब और टेलीस्कोप अंतरिक्ष में भेजे गए हैं। लिहाज़ा समय के साथ अंतरिक्ष में कचरा बढने की रफ्तार भी बढ़ती गई। यह कुछ-कुछ वैसा ही है, जैसे पृथ्वी के कई पहाड़ों पर अत्यधिक पर्वतारोहण की वजह से तरह-तरह के कूड़े-करकट के अंबार लगे हैं। अंतरिक्ष में पृथ्वी की कक्षा में कबाड़ की एक चादर फैल गई है। एक अनुमान के अनुसार पिछले 25 वर्षों में अंतरिक्ष में कचरे की मात्रा दुगनी से भी ज़्यादा हो गई है।

अंतरिक्ष का कचरा मानव जाति और इस पृथ्वी के समस्त जीव जगत के लिए घातक है। अगर ये अनियंत्रित लाखों डिग्री सेल्सियस ताप पर दहकते टुकड़े घनी बस्तियों पर गिरते हैं तो जानमाल की बड़ी हानि हो सकती है। वर्ष 2001 में कोलंबिया स्पेस शटल की दुर्घटना में भारतीय मूल की कल्पना चावला समेत सात अन्य अंतरिक्ष यात्रियों की जानें चली गई थीं। इस दुर्घटना के अलग-अलग कारण बताए जाते हैं, लेकिन कुछ रिपोर्टों में यह आशंका जताई गई थी कि अंतरिक्ष में भटकते एक टुकड़े से टकराने की वजह से यह भीषण त्रासदी हुई थी।

जिस तरह से सभी देश अपने अंतरिक्ष कार्यक्रमों को अंजाम दे रहे हैं, उसके चलते तो अंतरिक्ष में भीड़ और भी बढ़ेगी और इससे दुर्घटनाओं की आशंका भी बढ़ेगी। तो फिर इस समस्या का समाधान क्या है? इसके जवाब में वैज्ञानिक कहते हैं कि अंतरिक्ष से कचरे को एकत्रित करके वापस धरती पर लाना ही इस समस्या का एकमात्र समाधान है। दूसरे शब्दों में, अंतरिक्ष में भी धरती की ही तरह स्वच्छता अभियान चलाने की आवश्यकता है। परंतु यह काम इतना आसान भी नहीं है। ऐसे में सभी देश यदि चाहें तो कम से कम इतना तो अवश्य किया जा सकता है कि जो भी देश अंतरिक्ष में जितना कचरा पैदा कर रहा है, वह उसे वापस लाने का खर्च वहन करे। इससे अंतरिक्ष में पैदा होने वाले कचरे पर लगाम लगाई जा सकती है हालांकि इस काम की तकनीकी समस्याएं फिर भी रहेंगी। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.esa.int/var/esa/storage/images/esa_multimedia/videos/2019/02/distribution_of_space_debris_in_orbit_around_earth/19223416-1-eng-GB/Distribution_of_space_debris_in_orbit_around_Earth_pillars.jpg

चांद की बर्फ प्राचीन चुम्बकीय क्षेत्र द्वारा संरक्षित है

चंद्रमा के ध्रुवों पर उपस्थित बर्फ वैज्ञानिकों के लिए कौतूहल का विषय होने के साथ आगामी मानव अभियानों के लिए एक संभावित संसाधन भी है। हाल ही में चंद्रमा जैसे शुष्क स्थान पर लंबे समय से बर्फ के उपस्थित होने का कारण का पता लगाया गया है। शोधकर्ताओं के अनुसार कुछ ध्रुवीय क्रेटर प्राचीन चुम्बकीय क्षेत्र के कारण संरक्षित हैं।       

गौरतलब है कि चंद्रमा का अपने अक्ष पर झुकाव पृथ्वी के 23.4 डिग्री की तुलना में मात्र 1.5 डिग्री है। कम झुकाव के कारण सूर्य आसमान में बहुत ऊपर नहीं उठता और सूर्य की किरणें इन क्रेटर्स के अंदर पहुंच नहीं पातीं। यहां तापमान शून्य से 250 डिग्री सेल्सियस से भी कम रहता है। यहां कुछ गड्ढों में पानी और बर्फ के साक्ष्य मिले हैं। 2018 में भारत के चंद्रयान-1 ने भी ध्रुवीय बर्फ के साक्ष्य प्रदान किए थे।     

चंद्रमा पर बर्फ के अस्तित्व की व्याख्या एक चुनौती रही है। हालांकि वहां सूर्य की रोशनी तो नहीं पहुंच सकती लेकिन सौर हवाएं तो पहुंच सकती हैं जो बर्फ को अणु-अणु-दर नष्ट कर सकती हैं। विशेषज्ञों के अनुसार इन सौर हवाओं के चलते बर्फ को कुछ लाख वर्षों में पूरी तरह नष्ट हो जाना चाहिए था।

लिहाज़ा, युनिवर्सिटी ऑफ एरिज़ोना के ग्रह वैज्ञानिक लोन हुड और उनके सहयोगियों ने बर्फ के बचे रहने का कारण समझने का प्रयास किया। ल्यूनर एंड प्लेनेटरी साइंस कांफ्रेंस में हुड ने बताया कि चंद्रमा के सुदूर अतीत की चुम्बकीय विसंगतियां कई ध्रुवीय क्रेटर की रक्षा कर रही हैं। ये विसंगतियां सौर हवा को विक्षेपित करने की क्षमता रखती हैं और सूर्य की किरणों से ओझल क्रेटर्स में बर्फ को सुरक्षित रखने में भूमिका निभाती हैं।     

गौरतलब है 1971 और 1972 के अपोलो 15 और 16 मिशनों के बाद से ही असामान्य चुम्बकीय शक्ति वाले क्षेत्रों को मापा गया था। हालांकि, स्पष्ट रूप से तो नहीं कहा जा सकता, लेकिन संभावना है कि इनकी उत्पत्ति 4 अरब वर्ष पूर्व हुई होगी जब चंद्रमा पर चुम्बकीय क्षेत्र उपस्थित था और लौह से भरपूर क्षुद्रग्रह इसकी सतह से टकराए होंगे। इन टक्करों के नतीजे में पिघला हुआ पदार्थ स्थायी रूप से चुम्बकित हो गया होगा।

हुड ने 2007 से 2009 के बीच चंद्रमा की परिक्रमा करने वाले एक जापानी अंतरिक्ष यान कागुया के डैटा का उपयोग करके दक्षिण ध्रुव का विस्तार से अध्ययन किया। उन्हें स्थायी रूप से ओझल कम से कम दो क्रेटर मिले जो इन विसंगतियों से प्रभावित थे। हालांकि चुम्बकीय क्षेत्र अत्यंत कमज़ोर है लेकिन सौर हवाओं को विक्षेपित करने के लिए पर्याप्त हो सकता है।

निकट भविष्य में चंद्रमा पर कई अभियान पहुंचने की अपेक्षा है। नासा मनुष्यों को भी भेजने की योजना बना रहा है। चंद्रमा की बर्फ के अध्ययन से पता चलेगा कि चांद पर पानी कैसे पहुंचा था और पृथ्वी पर पानी की उपस्थिति की गुत्थी भी सुलझ सकती है।    

चुम्बकीय क्षेत्र के सुरक्षात्मक प्रभाव की पुष्टि करने के लिए और डैटा ज़रूरी है। इसके लिए हुड चंद्रमा की सतह पर सौर पवन उपकरण लगाना चाहते हैं ताकि क्रेटर के किनारों से गुज़रने वाले आवेशित कणों का मापन किया जा सके। (स्रोत फीचर्स) 

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.adb2089/full/_20220317_on_moon-shadowed-craters.jpg

सूर्य के पड़ोसी तारे का पृथ्वी जैसा ग्रह मिला

हाल ही में खगोलविदों ने एक नए ग्रह की खोज की है। यह सूर्य के निकटतम तारे प्रॉक्सिमा सेंटोरी की परिक्रमा करने वाला तीसरा ग्रह है जिसे प्रॉक्सिमा सेंटोरी-डी नाम दिया गया है, और यहां तरल पानी का समंदर होने की संभावना है।

युनिवर्सिटी ऑफ पोर्तो के इंस्टीट्यूट ऑफ एस्ट्रोफिज़िक्स एंड स्पेस साइंस के खगोलविद जोआओ फारिया और उनके साथियों ने प्रॉक्सिमा सेंटोरी तारे से आने वाले प्रकाश वर्णक्रम में सूक्ष्म विचलन को मापकर प्रॉक्सिमा सेंटोरी-डी का पता लगाया है – ग्रह का गुरुत्वाकर्षण परिक्रमा के दौरान सूर्य को अपनी ओर खींचता है। खगोलविदों ने एस्प्रेसो नामक एक अत्याधुनिक दूरबीन की मदद से यह ग्रह खोजा है। यह दूरबीन चिली की युरोपीय दक्षिणी वेधशाला में स्थापित है। ये नतीजे एस्ट्रोनॉमी एंड एस्ट्रोफिज़िक्स पत्रिका में प्रकाशित हुए हैं।

‘डगमगाने’ की इस तकनीक में पृथ्वी की सीध में तारे की गति में बदलाव देखा जाता है; एस्प्रेसो 10 सेंटीमीटर प्रति सेकंड तक की डगमग भी पता लगा सकता है। फारिया बताते हैं कि प्रॉक्सिमा सेंटोरी पर ग्रह का कुल प्रभाव लगभग 40 सेंटीमीटर प्रति सेकंड तक है।

विचलन का पता लगाने के लिए शोधकर्ताओं ने दो वर्ष से कुछ अधिक समय तक प्रॉक्सिमा सेंटोरी के वर्णक्रम के 100 से अधिक अवलोकन किए। एस्प्रेसो को वेधशाला के एक विशेष कमरे में एक (भूमिगत) टंकी के अंदर रखा गया है ताकि इसका दाब और तापमान स्थिर रहे। इससे माप सुसंगत रहते हैं और दोहराए जा सकते हैं। एस्प्रेसो वर्णक्रम की तरंग दैर्ध्य को 10-5 ऑन्गस्ट्रॉम तक, यानी हाइड्रोजन परमाणु के व्यास के दस-हज़ारवें हिस्से तक सटीकता से माप सकता है।

तारे के स्पेक्ट्रम पर पड़ने वाले इसके प्रभाव के आधार पर शोधकर्ताओं का अनुमान है कि यह ग्रह संभवत: पृथ्वी से छोटा है, लेकिन इसका द्रव्यमान हमारी पृथ्वी के द्रव्यमान के 26 प्रतिशत से कम नहीं है।

एस्प्रेसो को मुख्य रूप से बाह्य ग्रहों की खोज करने के साथ-साथ क्वासर जैसे अत्यंत उज्ज्वल दूरस्थ पिण्डों से आने वाले प्रकाश का अध्ययन करने के लिए बनाया गया था।

खगोलविदों के लिए प्रॉक्सिमा सेंटोरी का एक विशेष महत्व है। हमारा नज़दीकी तारा होने के कारण इसके बारे में हमेशा बहुत उत्सुकता रही है। यह जानना रोमांचक है कि तीन छोटे ग्रह हमारे इस निकटतम पड़ोसी तारे की परिक्रमा कर रहे हैं। उनकी समीपता ही आगे अध्ययन का मुख्य कारण है – उनकी प्रकृति कैसी है और वे कैसे बने वगैरह। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://media.nature.com/lw800/magazine-assets/d41586-022-00400-3/d41586-022-00400-3_20120706.jpg

कुछ धूमकेतु हरे क्यों चमकते हैं?

र्ष 2014 में लवजॉय नाम का धूमकेतु (पुच्छल तारा) अपनी धुंधली हरी आभा के साथ दिखाई दिया था। ऐसी ही हरी चमक कुछ अन्य धूमकेतुओं में भी देखी गई है। अब, प्रयोगशाला में किए गए एक अध्ययन में शोधकर्ताओं ने इस रंगीन चमक का कारण पता लगाया है।

वैज्ञानिकों को यह तो अंदेशा था कि धूमकेतुओं के आसपास की हरे रंग की आभा डाईकार्बन (C2) नामक एक अभिक्रियाशील अणु के टूटने से आती है। इसकी पुष्टि के लिए शोधकर्ताओं ने कार्बन क्लोराइड (C2Cl4) से अल्ट्रावायलेट लेज़र की मदद से क्लोरीन परमाणुओं को अलग कर दिया और फिर शेष रहे डाईकार्बन अणुओं पर उच्च-तीव्रता वाला प्रकाश डाला। नतीजतन हुई रासायनिक अभिक्रिया ने शोधकर्ताओं को आश्चर्यचकित कर दिया।

प्रोसिडिंग्स ऑफ दी नेशनल एकेडमी ऑफ साइंस में शोधकर्ताओं ने बताया है कि डाईकार्बन अणु ने प्रकाश का एक फोटॉन अवशोषित करके हरा फोटॉन उत्सर्जित करने की बजाय दो फोटॉन अवशोषित किए, और फिर टूटकर हरे रंग का प्रकाश उत्सर्जित किया। पहले अवशोषित फोटॉन से डाईकार्बन अणु एक अर्ध-स्थिर अवस्था में पहुंचा, और दूसरे अवशोषित फोटॉन से और अधिक ऊर्जा लेकर यह अस्थिर अवस्था में पहुंचा और टूट गया। इस अभिक्रिया में हरे रंग का फोटॉन उत्सर्जित हुआ।

इस प्रक्रिया में डाईकार्बन अणु दो बार ऊर्जा लेकर अवस्था परिवर्तन (ट्रांज़िशन) करता है। आम तौर पर रसायनज्ञ मानते हैं कि ऐसे ट्रांज़िशन निषिद्ध है। हालांकि भौतिकी के नियम अनुसार ये ट्रांज़िशन पूरी तरह निषिद्ध भी नहीं हैं। ये ट्रांज़िशन प्रयोगशाला में नहीं देखे जाते क्योंकि प्रयोगशाला में अणु अपेक्षाकृत पास-पास होते हैं। लेकिन अंतरिक्ष में अणु काफी दूर-दूर होते हैं और शायद ही कभी अन्य अणुओं या परमाणुओं के संपर्क में आते हैं।

डाईकार्बन अणु का जीवनकाल दो दिन से भी कम समय का होता है। प्रयोगों के दौरान एकत्रित डैटा से पता चलता है कि सूर्य से पृथ्वी की दूरी के मुताबिक, इससे यह समझने में मदद मिलती है कि अणु के टूटने से जुड़ी हरी चमक केवल धूमकेतु के सिर के आसपास ही क्यों दिखाई देती है, इसकी पूंछ में यह कभी क्यों दिखाई नहीं देती। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.acz9875/full/_20211220_on_comet.jpg

नोबेल पुरस्कार: भौतिक शास्त्र

इस वर्ष भौतिकी का नोबेल पुरस्कार तीन वैज्ञानिकों को दिया गया है। इन तीनों ने स्वतंत्र रूप से काम करते हुए जटिल तंत्रों व परिघटनाओं के अध्ययन के तौर-तरीके विकसित किए और जलवायु को समझने के लिए मॉडल विकसित करने में मदद की।

प्रिंसटन विश्वविद्यालय, यू.एस. के स्यूकुरो मनाबे और मैंक्स प्लांक मौसम विज्ञान विभाग, जर्मनी के क्लॉस हैसलमान ने पृथ्वी के जलवायु सम्बंधी हमारे ज्ञान की बुनियाद रखी और दर्शाया कि हम मनुष्य इसे कैसे प्रभावित करते हैं। इटली के सैपिएंज़ा विश्वविद्यालय के जियार्जियो पैरिसी ने बेतरतीब और अव्यवस्थित परिघटनाओं को समझने के क्षेत्र में क्रांतिकारी योगदान दिया।

जटिल तंत्र वे होते हैं जिनमें कई घटक होते हैं और वे एक-दूसरे के साथ कई अलग-अलग ढंग से परस्पर क्रिया करते हैं। ज़ाहिर है, इनका विवरण गणित की समीकरणों में नहीं समेटा जा सकता – कई बार तो ये संयोग के नियंत्रण में होते हैं।

जैसे मौसम को ही लें। मौसम पर न सिर्फ कई कारकों का असर होता है बल्कि कभी-कभी शुरुआती तनिक से विचलन से आगे चलकर असाधारण असर देखने को मिलते हैं। मनाबे, हैसलमान और पैरिसी ने ऐसे ही तंत्रों-परिघटनाओं को समझने तथा उनके दीर्घावधि विकास का पूर्वानुमान करने में योगदान दिया है।

मनाबे धरती की जलवायु के भौतिक मॉडल की मदद से यह दर्शा पाने में सफल रहे कि कैसे वायुमंडल में कार्बन डाईऑक्साइड की बढ़ती सांद्रता के साथ धरती का तापमान बढ़ता है। इसी काम को आगे बढ़ाते हुए हैसलमान ने वह मॉडल विकसित किया जिसमें मौसम और जलवायु की कड़ियां जोड़ी जा सकती हैं। उन्होंने ऐसे संकेतक भी विकसित किए जिनकी मदद से जलवायु पर मनुष्य के प्रभाव को आंका जा सकता है। मनाबे व हैसलमान द्वारा विकसित मॉडल से यह स्पष्ट हुआ कि धरती के तापमान में हो रही वृद्धि मूलत: मानव-जनित कार्बन डाईऑक्साइड की वजह से हो रही है।

इन दोनों से अलग पैरिसी ने अव्यवस्थित जटिल पदार्थों में पैटर्न खोज निकाले। उनकी खोज के फलस्वरूप आज हम भौतिकी के साथ-साथ गणित, जीव विज्ञान, तंत्रिका विज्ञान और मशीन लर्निंग जैसे क्षेत्रों में सर्वथा बेतरतीब पदार्थों और परिघटनाओं को समझ पा रहे हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.nobelprize.org/all-nobel-prizes-2021/

हबल दूरबीन लौट आई है!

प्रतिष्ठित अंतरिक्ष दूरबीन हबल में लगभग एक महीने पहले कंप्यूटर सम्बंधी गड़बड़ी आ जाने के कारण उसने काम करना बंद कर दिया था, अब यह फिर से काम करने लगी है। साइंस पत्रिका के अनुसार दूरबीन का नियंत्रण ऑपरेटिंग पेलोड कंट्रोल कंप्यूटर से हटाकर बैकअप उपकरणों पर लाने के बाद हबल दूरबीन के सभी उपकरणों के साथ पुन: संवाद स्थापित कर लिया गया है।

दरअसल 13 जून को हबल के विज्ञान उपकरणों को नियंत्रित करने वाला और इनकी सेहत की निगरानी करने वाला पेलोड कंप्यूटर उपकरणों के साथ संवाद नहीं कर पा रहा था, इसलिए उसने इन्हें सामान्य मोड से हटाकर सुरक्षित मोड में डाल दिया था। हबल के ऑपरेटरों को पहले तो लगा कि मेमोरी मॉड्यूल में गड़बड़ी हुई होगी जिसके चलते यह समस्या हो रही है। लेकिन तीन में से एक बैकअप मॉड्यूल पर डालने के बावजूद भी समस्या बरकरार थी। कई अन्य उपकरणों को भी जांचा गया लेकिन गड़बड़ी का कारण उनमें भी नहीं मिला।

अंतत: यह निर्णय लिया गया कि पूरी की पूरी साइंस इंस्ट्रूमेंट कमांड एंड डैटा हैंडलिंग (SIC&DH) युनिट को बैकअप पर डाल दिया जाए, पेलोड कंप्यूटर इस युनिट का ही एक हिस्सा है। मरम्मत दल ने पहले पृथ्वी पर ही हार्डवेयर के साथ इस पूरी प्रक्रिया का अभ्यास किया और यह सुनिश्चित किया कि ऐसा करने से दूरबीन को कोई अन्य नुकसान न पहुंचे। युनिट को जैसे ही स्थानांतरित करना शुरू किया गया समस्या की जड़ पकड़ में आ गई। समस्या SIC&DH के पावर कंट्रोल युनिट में थी। यह युनिट पेलोड कंप्यूटर को स्थिर वोल्टेज देता है और समस्या इस कारण थी कि या तो सामान्य से कम-ज़्यादा वोल्टेज मिल रहा था या वोल्टेज का पता लगाने वाला सेंसर गलत रीडिंग दे रहा था। चूंकि SIC&DH में अतिरिक्त पॉवर कंट्रोल युनिट भी होती है इसलिए पूरी युनिट को बैकअप पर डाला जाना जारी रहा।

हबल मिशन कार्यालय के प्रमुख टॉम ब्राउन ने बताया कि SIC&DH के साइड ए पर हबल को सामान्य मोड में सफलतापूर्वक ले आया गया है। यदि सब कुछ सामान्य रहा तो इस सप्ताहांत तक हबल फिर से अवलोकन का अपना काम शुरू कर देगा। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://i2.wp.com/regmedia.co.uk/2018/10/29/hubble_by_nasa.jpg?ssl=1