भारत में जलवायु परिवर्तन की गति धीमी है?

हाल ही में भारत के पर्यावरण मंत्रालय और हारवर्ड युनिवर्सिटी द्वारा आयोजित जलवायु सम्मेलन (climate summit india) में एक नक्शा दिखाया गया जिसमें पूरी दुनिया लाल रंग में तापमान वृद्धि दिखा रही थी, लेकिन भारत तुलनात्मक रूप से हल्के रंग में था। यानी नक्शा दिखा रहा था कि दुनिया के ज़्यादातर हिस्सों में तापमान तेज़ी से बढ़ रहा है, लेकिन भारत अपेक्षा से धीरे-धीरे गर्म हो रहा है (global warming map, temperature anomaly India)।

किंतु, हाल के वर्षों के अपने अनुभवों और आंकड़ों को देखें तो भारत में रिकॉर्ड तोड़ गर्मी (record heatwave India) और लू दर्ज की गई है। फिर भी चार्ट बताता है कि 1901 से अब तक भारत का सालाना औसत तापमान 0.7 डिग्री सेल्सियस बढ़ा है, जो कि वैश्विक औसत से लगभग आधा है।

सवाल है कि ऐसा कैसे कि एक तरफ देश में भीषण गर्मी पड़ रही है और दूसरी तरफ दीर्घकालिक तापमान वृद्धि धीमी दिख रही है?

इस विरोधाभास की एक बड़ी वजह वायु प्रदूषण (air pollution India) माना जा रहा है। खासकर उत्तर भारत में गंगा का मैदानी इलाका दुनिया के सबसे प्रदूषित क्षेत्रों (most polluted region) में से एक है। यहां उद्योगों, गाड़ियों, खाना पकाने, पराली जलाने और धूल के कारण हवा में सूक्ष्म कणों से भरपूर एरोसोल छा जाते हैं। ये सूरज की रोशनी को वापस अंतरिक्ष में परावर्तित कर देते हैं (aerosol effect on climate) और हवा को ठंडा कर देते हैं। यह प्रदूषण कभी-कभी ग्रीनहाउस गैसों के असर को दबा देता है।

लेकिन यह तर्क पूरी तरह मज़बूत नहीं है। सभी एरोसोल ठंडक नहीं पहुंचाते – जैसे काला धुआं (कालिख) (black carbon pollution) गर्मी को सोखता है और वातावरण को गर्म करता है। मुंबई के वैज्ञानिक रघु मूर्तुगुड़े कहते हैं कि भारत में सबसे ज़्यादा प्रदूषण सर्दियों में होता है, और सबसे तेज़ तापमान वृद्धि भी उन्हीं महीनों में देखी गई है। इसका मतलब है कि सिर्फ एरोसोल इस पैटर्न की व्याख्या नहीं कर सकता।

एक और कारण बदलता पवन चक्र (changing wind patterns) हो सकता है। रघु मूर्तुगुड़े और उनके साथियों ने पाया है कि मध्य एशिया में तेज़ गर्मी के कारण मानसूनी हवाओं की दिशा बदल रही है। अब ये हवाएं थोड़ा उत्तर की ओर खिसक रही हैं, जिससे पाकिस्तान और उत्तर-पश्चिम भारत के सूखे इलाकों में ज़्यादा बारिश हो रही है। अब वैज्ञानिक यह समझने की कोशिश कर रहे हैं कि क्या बाकी मौसमों में भी पवन चक्र में ऐसे ही बदलाव भारत में तापमान को अपेक्षाकृत ठंडा बनाए हुए हैं।

एक तीसरी वजह भारत में बड़े पैमाने पर सिंचाई (large-scale irrigation India) हो सकती है, खासकर उत्तर भारत में। जब खेतों और पौधों से पानी भाप बनकर उड़ता है, तो वह हवा से गर्मी खींचता है, जिससे ठंडक महसूस होती है (evapotranspiration cooling effect)। ऐसा असर अमेरिका के मिडवेस्ट इलाके में भी अत्यधिक खेती की वजह से देखा गया है।

कुछ शोध बताते हैं कि 20वीं सदी में पूरे दक्षिण एशिया में बड़े स्तर पर हुई सिंचाई ने तापमान वृद्धि की रफ्तार (agriculture and climate interaction) को धीमा कर दिया। लेकिन इस पर भी सवाल उठाए गए हैं। कुछ भारतीय वैज्ञानिकों का मानना है कि उपग्रहों से मिले आंकड़े गर्मियों में सिंचाई की मात्रा को बढ़ा-चढ़ाकर दिखाते हैं। गर्मियों में ही सिंचाई सबसे कम होती है, और उसी समय तापमान वृद्धि में कमी सबसे ज़्यादा दिखाई देती है।

वहीं, इंडियन इंस्टिट्यूट ऑफ साइंस के गोविंदसामी बाला का मानना है कि भारत नम-उष्णकटिबंधीय क्षेत्र (humid tropical climate) में स्थित है और यहां का प्राकृतिक मौसम चक्र खुद ही इस धीमी तापमान वृद्धि का कारण हो सकता है। उनके अनुसार, प्रदूषण और सिंचाई का असर स्थानीय स्तर पर हो सकता है, लेकिन पूरे देश के तापमान पर इसका खास असर नहीं पड़ता।

बहरहाल, उपरोक्त संभावित कारकों के अलावा एक और बात ध्यान में रखने की है। इस सम्मेलन का आयोजक स्वयं जलवायु मंत्रालय था, जो जलवायु परिवर्तन (climate change India) और बढ़ते तापमान को थामने के लिए ज़िम्मेदार है। फिर, भारत में आंकड़ों की हालत बहुत अच्छी नहीं है। उपरोक्त सारे आंकड़े उपग्रहों से प्राप्त हुए हैं और इनकी पुष्टि मैदानी आंकड़ों से करना ज़रूरी है। और, आंकड़े वही बयान करते हैं जो उनसे बयान करवाया जाता है।

कारण चाहे जो भी हो एक बात साफ है कि इस पर गहराई से अध्ययन (climate data analysis) और जांच-पड़ताल की ज़रूरत है। अधिक काम ही स्थिति को स्पष्ट कर पाएगा। और एक बात, भारत में औसत तापमान धीरे-धीरे बढ़े या तेज़ी से, लेकिन ग्रीष्म लहरें तो बढ़ रही हैं (heatwaves India 2023)। 2023 भारत के इतिहास का सबसे गर्म साल रहा, जिसमें भीषण ग्रीष्म लहरों ने 700 से ज़्यादा लोगों की जान ली। विशेषज्ञों का मत है कि आगामी सालों में गर्मियां और भी घातक हो सकती हैं। इसलिए बढ़ते तापमान को थामने और बदलती जलवायु को रोकने के प्रयास करने में ही भलाई है(climate action India)। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/content/article/india-global-warming-hole-scientists-arent-sure#:~:text=India%27s%20slower%20warming%2C%20he%20said,could%20also%20be%20just%20noise.%E2%80%9D

मानव कचरा कीट के रक्षा कवच में शामिल हुआ

माइक्रोप्लास्टिक (microplastics pollution) हर जगह पहुंच गया है – गहरे समुद्र से लेकर मानव मस्तिष्क (microplastics in human brain) तक। प्लास्टिक के 5 मिलीमीटर से छोटे-छोटे टुकड़ों के लिए माइक्रोप्लास्टिक शब्द वैज्ञानिकों ने 2000 के दशक में गढ़ा था, लेकिन इस समस्या ने अपने पांव पसारना उसके बहुत पहले ही शुरू कर दिया था। साइंस ऑफ दी टोटल एनवायरनमेंट जर्नल (Science of the Total Environment journal) में प्रकाशित एक रिपोर्ट बताती है कि कुछ कीटों की इल्लियां शिकारियों से बचाने वाले अपने खोल में 1970 के दशक से ही प्लास्टिक शामिल करने लगी थीं।

दरअसल वैज्ञानिक यह जानने की कोशिश कर रहे हैं कि जीव-जंतुओं के दैनिक जीवन में मानव अपशिष्ट (human waste impact on wildlife) कैसे शामिल हो रहे हैं। कई अध्ययनों की अपनी इस शृंखला में वे पहले कई खुलासे कर चुके हैं। और अपने इस हालिया अध्ययन में उन्होंने ने कैडिसफ्लाय (ट्राइकोप्टेरा) (Trichoptera insects) की इल्ली के बारे में बताया है।

दरअसल, कैडिसफ्लाय पंखदार कीटों का एक समूह है, जिसकी इल्लियां तो पानी में पलती हैं लेकिन वयस्क कीट भूमि (aquatic to terrestrial insect life cycle) (थल) पर रहते हैं। जब ये इल्लियां पानी में रहती हैं तो वे कंकड़-पत्थर या पत्तियों जैसी सामग्री से अपना सुरक्षा कवच बनाती हैं। वयस्क होने पर यह कवच पानी में ही छोड़कर वयस्क कीट भूमि पर आ जाते हैं।

शोधकर्ताओं ने नेदरलैंड के एक प्राकृतिक इतिहास संग्रहालय (Netherlands natural history museum) में दशकों की अवधि में सहेजे गए 549 खोलों के संग्रह का विश्लेषण किया। 1986 के कुछ कवचों में उपस्थित चमकीले नीले कणों ने शोधकर्ताओं का ध्यान खींचा। फिर, 1971 के एक कवच में उन्हें पीले रंग के कण मिले। आगे अध्ययन में उन्हें कवच में टाइटेनियम, जस्ता और सीसा जैसे सामान्य प्लास्टिक योजक (plastic additives in insects) होने के प्रमाण मिले। कवचों में प्लास्टिक की इस उपस्थिति पर वैज्ञानिकों का कहना है कि रंगीन माइक्रोप्लास्टिक इल्ली को शिकारियों की नज़रों में अधिक दिखने योग्य बना देगा, जिससे वे मछलियों, पक्षियों और अपने अन्य शिकारियों के कारण खतरे में पड़ सकती हैं(predation risk due to microplastics)। साथ ही यदि कैडिसफ्लाय पिछले 50 वर्षों से माइक्रोप्लास्टिक से प्रभावित है तो निश्चित रूप से मीठे पानी का पूरा पारिस्थितिकी तंत्र (freshwater ecosystem pollution) प्रभावित होगा। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.zhlvqx6/full/_20250411_on_microplastics-1744384152787.jpg

मनुष्यों की ऊर्जा ज़रूरत बनी समुद्री जीवों पर खतरा

पनी चाहतों के चलते हमारी ऊर्जा ज़रूरतें (energy demands) दिनों दिन बढ़ती जा रही हैं। इनकी पूर्ति के लिए हम नए-नए ऊर्जा स्रोत (energy sources) खोजते रहते हैं, अपने देशों में न मिलें तो बाहर से मंगवाते हैं। लेकिन ज़रा नहीं सोचते कि इन बढ़ती ख्वाहिशों की पूर्ति के लिए चल रहे क्रियाकलापों (industrial activities) से जीव-जंतुओं, उनके प्राकृतवासों और पारिस्थितिकी (ecosystem balance) पर कैसे प्रतिकूल असर पड़ेंगे?

लेकिन जीव विज्ञानियों (biologists), पारिस्थितिकीविदों (ecologists) और पर्यावरण कार्यकर्ताओं (environmental activists) को यह चिंता लगातार सताती रहती है। उनकी ऐसी ही एक चिंता है मेक्सिको की एक सबसे बड़ी ऊर्जा परियोजना (Mexico energy projects) सगुआरो एनर्जिया परियोजना या टर्मिनल जीएनएल डी सोनोरा (TGNLS) परियोजना।

TGNLS टर्मिनल मेक्सिको के प्यूर्टो लिबटार्ड (Puerto Libertad) में स्थापित किया जा रहा है। इस टर्मिनल से टेक्सास (Texas) स्थित प्राकृतिक गैस (natural gas) के कुओं से तरल प्राकृतिक गैस (LNG – Liquified Natural Gas) विदेशी बाज़ारों, खासकर एशियाई देशों, को निर्यात की जाएगी। पर्यावरणविद बताते हैं कि इस परियोजना में LNG निर्यात के लिए बड़े-बड़े जहाज़ी टैंकरों (LNG Tankers) का जो मार्ग निर्धारित किया गया है उसके कारण पहले से ही जोखिमग्रस्त ब्लू व्हेल (endangered blue whales) समेत अन्य समुद्री जीवों (marine animals) के आवास (habitats), प्रजनन (breeding), भोजन (feeding grounds) और प्रवास (migration patterns) प्रभावित होंगे; उनका जीवन और भी जोखिमपूर्ण हो जाएगा।

दरअसल, प्यूर्टो लिबटार्ड कैलिफोर्निया खाड़ी (gulf of california) के शीर्ष के नज़दीक स्थित है। कैलिफोर्निया खाड़ी को नक्शे में देखेंगे तो पाएंगे कि यह संकरी और लंबी (1100 किलोमीटर लंबी) है। यह जगह कई समुद्री स्तनधारियो (व्हेल जैसे सीटेशियन)(marine mammals) का हॉट-स्पॉट (biodiversity hotspot) है। यह स्थल सीटेशियन्स की तकरीबन 36 प्रजातियों का घर है। यह कई प्रजातियां का भोजन और प्रजनन क्षेत्र है। गौरतलब है कि यहां रहने वाली व्हेल की कई प्रजातियां लुप्तप्राय (whale species endangered) की श्रेणी में हैं। अब यदि यह परियोजना बनेगी तो खतरे और बढ़ेंगे।

बीस साल पुरानी इस परियोजना का स्वरूप और उद्देश्य अपने प्रारंभ के समय से बहुत अलग हो गया है। इस टर्मिनल को मूल रूप से मेक्सिको में गैस आयात करने के लिए डिज़ाइन किया गया था। लेकिन आयात टर्मिनल (import terminal) कभी बना ही नहीं। फिर 2018 में, मेक्सिको पैसिफिक नामक एक कंपनी ने इस परियोजना को अपने नियंत्रण ले लिया और इसकी डिजाइन को एक निर्यात टर्मिनल (export terminal) में बदल दिया। नई डिज़ाइन में यह टर्मिनल मूल डिज़ाइन से तीन गुना बड़ा है। इसके तहत 800 किलोमीटर लंबी पाइपलाइन बिछेगी, और पाइपलाइन एवं बड़े-बड़े जहाज़ी टैंकरों के ज़रिए टेक्सास के कुओं से प्रतिदिन 2.8 अरब क्यूबिक फीट प्राकृतिक गैस मुख्यत: एशिया को भेजी जाएगी। इतने सब तामझाम की लागत 15 अरब डॉलर है।

इन्हीं बदलावों के चलते कंपनी को परियोजना का पर्यावरणीय प्रभाव आकलन (Environmental Impact Assessment – EIA) नए सिरे से करना था। 2023 में, कंपनी ने मेक्सिको की नियामक एजेंसियों को इस परियोजना के पर्यावरणीय प्रभाव के आकलन और उन प्रभावों को सीमित करने की योजनाओं की रिपोर्ट सौंपी थी। लेकिन इस रिपोर्ट का बारीकी से विश्लेषण करने वाले जीव विज्ञानियों और पर्यावरणविदों का कहना है कि इस ‘पर्यावरण प्रभाव आकलन’ रिपोर्ट में कई त्रुटियां (critical flaws) है, कई चीज़ें छूटी हैं, और कई आंकड़े सही पेश नहीं किए गए हैं। जैसे टैंकरों का एकदम ठीक-ठीक मार्ग (exact LNG tanker route) क्या होगा, व्हेल की कौन सी प्रजातियों की कितनी-कितनी संख्या कहां-कहां है, और टैंकरों के तय मार्ग में कितने जीव इस टकराव (collision risk) को झेलेंगे।

दरअसल कैलफोर्निया खाड़ी से गुज़रने वाला परियोजना का प्रस्तावित मार्ग व्हेल और अन्य कई समुद्री जीवों का प्रमुख आवास है, और कई प्रजातियां अपनी प्रवास यात्रा के लिए यही मार्ग अपनाती हैं। ज़ाहिर है समुद्री जीवों की इन जहाज़ों से टक्कर की संभावना (ship strike risk) है जो उनके लिए जानलेवा साबित हो सकती है। और व्हेल टक्कर से बच भी गईं तो जहाज़ों से होने वाला शोर (ship noise pollution) उनके संवाद को तहस-नहस कर देगा। रिपोर्ट में जहाज़ों द्वारा उत्पन्न ध्वनि प्रदूषण (underwater noise impact) पर भी कोई बात नहीं की गई है। जबकि पूर्व अध्ययनों मे देखा गया है कि जहाज़ का शोर व्हेल के व्यवहार (behavioral change due to noise) को बदल सकता है।

इन सब खामियों के चलते जीव विज्ञानियों और पर्यावरण कार्यकर्ताओं (scientists and conservationists) ने इन मुद्दों को कानूनी रूप से उठाया है; इस परियोजना के विरोध में पांच मुकदमे (lawsuit against project) दायर किए गए हैं। फिलहाल इन प्रयासों से मेक्सिको की पर्यावरण अनुमति एजेंसी ने इस परियोजना पर वक्ती रोक (temporary suspension) लगा दी है। साथ ही पर्यावरण हितैषियों ने इस मुद्दे पर जागरुकता के लिए ‘व्हेल या गैस’ अभियान (whale vs gas campaign) शुरू किया है। बहरहाल, भले ही यह मुद्दा मेक्सिको (Mexico LNG Project) का है, लेकिन यह दुनिया भर के देशों की पर्यावरणीय चिंताओं (global environmental concerns) की ओर ध्यान आकर्षित करता है। और याद दिलाता है कि यह प्रकृति (planet earth) सिर्फ मनुष्यों की नहीं वरन सभी जीव-जंतुओं की है: हमारी ख्वाहिशों का खामियाजा अन्य जीव-जंतुओं को न भरना पड़े। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.zame07s/full/_20250314_on_saguaroproject-1743014356057.jpg

क्या डे-लाइट सेविंग टाइम ज़रूरी है?

र साल डे-लाइट सेविंग टाइम प्रथा के चलते मार्च में अमेरिका में घड़ियां एक घंटा आगे बढ़ाई जाती हैं (daylight saving time USA)। संयुक्त राज्य अमेरिका में डे-लाइट सेविंग टाइम सबसे पहले 1918 में प्रथम विश्व युद्ध के दौरान अपनाया गया था। उद्देश्य था ऊर्जा की बचत (energy saving policy) और दिन की रोशनी का अधिकाधिक उपयोग करना। गर्मी और वसंत ऋतु में घड़ियां आगे बढ़ाकर लोग प्राकृतिक रोशनी का अधिक उपयोग कर सकते थे और बिजली की खपत कम की जा सकती थी।

लेकिन देखा गया है कि घड़ियां आगे बढ़ने पर लाखों लोग थकान और नींद की कमी से जूझते हैं (sleep disruption, DST)। नींद में एक घंटे की कमी कोई छोटी समस्या नहीं है – यह स्वास्थ्य पर गंभीर असर (health effects of DST) डाल सकती है। 54 प्रतिशत अमरीकियों का मत है कि डे-लाइट सेविंग टाइम (DST) को पूरी तरह से समाप्त कर दिया जाए (End DST USA)।

इसके दो विकल्प हैं: DST को पूरे साल लागू रखा जाए। या स्थायी मानक समय – पूरे साल वही समय रखना जो प्राकृतिक दिन की रोशनी के अनुसार हो (permanent standard time)।

कई स्वास्थ्य विशेषज्ञ स्थायी DST का विरोध करते हैं। उनका कहना है कि देर रात तक रोशनी और अंधेरी सुबह जैविक लय (circadian rhythm disruption) को प्रभावित कर सकती है। इसकी बजाय, आधे से अधिक अमरीकियों और कई वैज्ञानिक संगठनों का मानना है कि स्थायी मानक समय अधिक स्वस्थ विकल्प होगा (healthier time choice)। रॉयल सोसाइटी ओपन साइंस में प्रकाशित एक अध्ययन DST समाप्त करने के विचार को चुनौती देता है।

सेविले विश्वविद्यालय की भौतिक विज्ञानी जोस मारिया मार्टिन-ओलाला का मानना है कि DST सिर्फ ऊर्जा की बचत से कहीं अधिक है (social impact of DST)। उनके अनुसार घड़ी में मौसमी बदलाव से आधुनिक समाजों को काम के निर्धारित समय और प्राकृतिक दिन के बदलाव के बीच सामंजस्य बैठाने में मदद मिलती है। लेकिन आजकल की भागमभाग वाली दिनचर्या मौसमी बदलावों की अनदेखी करती है। ऐसे में DST हमें सर्दियों में काम और स्कूल बहुत जल्दी शुरू करने और गर्मियों में बहुत देर से शुरू करने से रोकता है, खासकर उन क्षेत्रों में जो भूमध्य रेखा से दूर हैं (day length variation), जहां दिन की अवधि में बड़े बदलाव होते हैं।

इन तर्कों के बावजूद, चिकित्सा विशेषज्ञ चेतावनी देते हैं कि DST हमारी जैविक घड़ी को प्रभावित करता है। पिट्सबर्ग विश्वविद्यालय की न्यूरोलॉजिस्ट जोआना फोंग-इसरियावोंगसे का कहना है कि सुबह की धूप (morning sunlight benefits) मेलाटोनिन स्तर को नियंत्रित करने और लोगों को सतर्क रखने के लिए महत्वपूर्ण है (melatonin regulation)। अध्ययनों में DST से जुड़े कुछ गंभीर स्वास्थ्य जोखिमों की पहचान की गई है; जैसे, दिल का दौरा और स्ट्रोक के मामलों में वृद्धि (heart attach risks); उनींदेपन के कारण कार दुर्घटनाओं में वृद्धि (car accidents due to DST), कार्यस्थल दुर्घटनाओं में वृद्धि; सालाना स्वास्थ्य सेवा खर्च में वृद्धि और उत्पादकता में क्षति।

अमेरिकन एकेडमी ऑफ स्लीप मेडिसिन (American academy of sleep medicine) और अन्य चिकित्सा संगठनों ने स्थायी मानक समय का समर्थन किया है, जो मानव जैविकी के अनुसार बेहतर है।

सभी वैज्ञानिक इस पर सहमत नहीं हैं। कुछ शोधकर्ता मानते हैं कि DST के नकारात्मक प्रभावों (DST criticism) को बढ़ा-चढ़ा कर बताया गया है। नींद में विघ्न डालने के लिए अकेला DST ज़िम्मेदार नहीं है; आधुनिक इनडोर जीवनशैली (indoor lifestyle sleep impact), कृत्रिम रोशनी, और देर रात तक स्क्रीन का उपयोग नींद को कहीं अधिक प्रभावित करते हैं।

बहरहाल, अधिकांश स्वास्थ्य विशेषज्ञ मानते हैं कि स्थायी मानक समय सार्वजनिक स्वास्थ्य के लिए सबसे अच्छा विकल्प (public health policy) है। 

बहरहाल, फैसला चाहे जो हो, यह बहस इस दृष्टि से वैश्विक महत्व की है कि हम समय का प्रबंधन कैसे करते हैं, यह हमारे दैनिक क्रियाकलापों के साथ-साथ हमारे स्वास्थ्य को भी प्रभावित करता है (global time management debate)। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.z0vspqy/full/_20250318_on_daylightsavings-1742829506453.jpg

पालतू और जंगली परागणकर्ताओं के बीच प्रतिस्पर्धा

धुमक्खियां (honey bees) परागण (pollination) और शहद उत्पादन (honey production) में अपनी महत्वपूर्ण भूमिका के लिए जानी जाती हैं। लेकिन इटली स्थित जानूट्री (Giannutri Island) नामक एक छोटे द्वीप में हुए हालिया अध्ययन से पता चला है कि मधुमक्खियों की मौजूदगी जंगली परागणकर्ताओं (wild pollinators) के लिए नुकसानदायक हो सकती है। शोधकर्ताओं ने पाया है कि जब मधुमक्खियों को थोड़े समय के लिए उनके छत्तों (beehives) में ही रोक कर रखा गया तो जंगली परागणकर्ताओं की संख्या में तो वृद्धि हुई ही, साथ ही उन्होंने अधिक मकरंद (nectar) और पराग (pollen) भी एकत्र किया। करंट बायोलॉजी (Current Biology Journal) में प्रकाशित यह अध्ययन संवेदनशील पारिस्थितिक तंत्र (ecosystem) में कॉलोनी बनाने वाली मधुमक्खियों की जंगली परागणकर्ताओं के साथ बढ़ती प्रतिस्पर्धा (competition) को लेकर चिंता व्यक्त करता है।

इस प्रयोग को यूनिवर्सिटी ऑफ पीसा (University of Pisa) और यूनिवर्सिटी ऑफ फ्लोरेंस (University of Florence) के वैज्ञानिकों ने अंजाम दिया। जानूट्री द्वीप टस्कन तट (Tuscan coast) के पास स्थित है और विरल आबादी वाला है। वर्ष 2018 में वैज्ञानिकों और पार्क अधिकारियों ने स्थानीय परागणकर्ताओं पर पालतू मधुमक्खियों (domesticated bees) के प्रभाव को समझने के लिए यहां मधुमक्खी के 18 कृत्रिम छत्ते लगाए थे।

2021 से 2024 के बीच फरवरी से अप्रैल तक, वैज्ञानिकों ने जंगली मधुमक्खियों की दो प्रजातियों – बफ टेल्ड बम्बलबी (Buff-tailed bumblebee, Bombus terrestris) और एक सॉलिटरी बी (Solitary bee, Anthophora dispar) पर नज़र रखी। उपलब्ध मकरंद एवं पराग की मात्रा के आधार पर उन्होंने यह पता लगाने का प्रयास किया कि कितनी जंगली और कितनी पालतू मधुमक्खियां फूलों पर जा रही हैं।

शोधकर्ताओं ने हर साल मधुमक्खी के 18 छत्तों को कुछ दिनों के लिए बंद किया। इससे उन्हें यह देखने का मौका मिला कि जब मधुमक्खियां अनुपस्थित थीं तब पर्यावरण में क्या बदलाव हुए। पाया गया कि मधुमक्खियों की अनुपस्थिति में जंगली परागणकर्ता काफी फले-फूले। मधुमक्खियों को छत्तों में रोकने पर कुछ महत्वपूर्ण बदलाव दिखे: फूलों में 60 प्रतिशत अधिक मकरंद (increased nectar availability) पाया गया; पराग की मात्रा में 30 प्रतिशत की वृद्धि हुई; जंगली परागणकर्ता अधिक संख्या में दिखाई दिए और उन्होंने फूलों पर अधिक समय बिताया; प्रतिस्पर्धा न होने के कारण जंगली परागणकर्ताओं को मकरंद और पराग आसानी से मिला।

दरअसल, मधुमक्खियां भोजन के स्रोतों का पता लगाकर कॉलोनी की अन्य मधुमक्खियों को उसकी जानकारी देती हैं, जिससे वे जल्दी पहुंचकर मकरंद और पराग खत्म कर देती हैं। दूसरी ओर, जंगली परागणकर्ता अकेले भोजन खोजते हैं, इसलिए वे संगठित मधुमक्खी की तेज़ प्रतिस्पर्धा के सामने कमज़ोर पड़ जाते हैं।

चार साल की इस अवधि में, पालतू मधुमक्खियों की उपस्थिति के कारण जंगली परागणकर्ताओं की संख्या में भारी गिरावट देखी गई। बम्बल बी (bumblebee) और सॉलिटरी बी (solitary bee) की आबादियों में 80 प्रतिशत तक की गिरावट देखी गई और पालतू मधुमक्खियां द्वीप के फूलों पर हावी रहीं। इसके अलावा वैज्ञानिकों ने सॉलिटरी बी की गुंजन की आवाज़ (buzzing sound) में भी हर साल पहले से कमी पाई। मधुमक्खियों के अलावा अन्य कारक, जैसे कीट आबादी में कुदरती घट-बढ़ और फूलों की उपलब्धता में बदलाव भी इसकी वजह हो सकते हैं। 

वैज्ञानिक चेताते हैं कि यह निष्कर्ष शायद अन्य स्थानों पर लागू न हो। जानूट्री छोटा द्वीप है, यहां युरोप के मुकाबले मधुमक्खियों के छत्तों का घनत्व औसत से दुगना है, तो हो सकता है प्रतिस्पर्धा यहां अधिक हो। संभव है कि अन्य पारिस्थितिक तंत्रों में जंगली और पालतू मधुमक्खियां एक-दूसरे को प्रभावित किए बिना सह-अस्तित्व (coexistence) में रह सकती हैं।

शोधकर्ताओं ने मधुमक्खियों पर पूरी तरह प्रतिबंध लगाने की वकालत नहीं की है, बल्कि हर तरह के परागणकर्ताओं के आपसी संतुलन को समझने के लिए और अधिक शोध (pollination research) की आवश्यकता को पर बल दिया है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.zn9xwk7/full/_20250319_on_bees-1742415102260.jpg

महासागरों में अम्लीयता बढ़ने के जलवायु पर असर

हासागर (Oceans) वातावरण से कार्बन डाईऑक्साइड (Carbon Dioxide) को अवशोषित कर जलवायु परिवर्तन (Climate Change) की गति को धीमा करने में मदद करते हैं। कार्बन डाईऑक्साइड सोखने पर समुद्रों (Seas) का पानी अधिक अम्लीय (Ocean Acidification) हो जाता है। एक नए अध्ययन (New Research) में चेतावनी दी गई है कि अगले 50 वर्षों में बढ़ती अम्लीयता के कारण महासागरों की कार्बन डाईऑक्साइड सोखने की क्षमता कमज़ोर हो सकती है, जिससे ग्लोबल वार्मिंग (Global Warming) में वृद्धि होगी।

इस संदर्भ में वनस्पति-प्लवकों (Phytoplankton) की भूमिका महत्वपूर्ण है। वनस्पति-प्लवक सूक्ष्म एक-कोशिकीय जीव (Microorganisms) हैं, जो समुद्र की सतह के पास तैरते रहते हैं। वे सूर्य के प्रकाश का उपयोग करके कार्बन डाईऑक्साइड को जैविक पदार्थ में बदलते हैं। कार्बन डाईऑक्साइड जज़्ब करने की उनकी क्षमता का अंदाज़ इसी बात से लगाया जा सकता है कि वे लगभग उतनी ही कार्बन डाईऑक्साइड सोखते हैं जितनी थलचर पेड़-पौधे (Terrestrial Plants) सोखते हैं।

और मरने के बाद वनस्पति-प्लवक समुद्र के पेंदे में बैठ जाते हैं, और इस तरह से कार्बन समुद्र की गहराई (Deep Ocean Carbon Storage) में हज़ारों वर्षों के लिए संग्रहित हो जाता है। यह प्राकृतिक प्रक्रिया पृथ्वी के जलवायु संतुलन (Climate Balance) को बनाए रखने में महत्वपूर्ण भूमिका निभाती है।

लेकिन, कार्बन डाईऑक्साइड के घुलने से समुद्री जल अधिक अम्लीय हो जाता है। पिछले 170 वर्षों में, मानवीय गतिविधियों (Human Activities) के कारण वायुमंडल में कार्बन डाईऑक्साइड का स्तर 280 से बढ़कर 420ppm हो गया है, जिससे समुद्र की अम्लीयता लगभग 30 प्रतिशत बढ़ गई है। यह अम्लीयता विशेष रूप से बड़े वनस्पति-प्लवकों के विकास को बाधित कर सकती है, जिससे महासागरों की कार्बन डाईऑक्साइड अवशोषित करने की क्षमता घट सकती है।

वनस्पति-प्लवकों पर बढ़ती अम्लीयता के प्रभाव को लेकर हुए पूर्व अध्ययनों (Previous Studies) के नतीजों में भिन्नता रही है। कुछ शोधों (Scientific Research) में पाया गया कि पोषक तत्वों से भरपूर तटीय क्षेत्रों में कुछ वनस्पति-प्लवकों की संख्या बढ़ सकती है, लेकिन ये शोध छोटे क्षेत्रों तक सीमित थे।

इस समस्या को हल करने के लिए, प्रिंसटन विश्वविद्यालय (Princeton University) के फ्रांस्वा मोरेल और जियामेन विश्वविद्यालय (Xiamen University) के डालिन शी के नेतृत्व में वैज्ञानिकों (Scientists) ने एक बड़ा महासागर सर्वेक्षण (Ocean Survey) किया। उन्होंने छह वर्षों तक प्रशांत महासागर (Pacific Ocean) और दक्षिणी चीन सागर (South China Sea) में 45 जगहों से पानी के नमूने इकट्ठा किए। प्रयोगों में उन्होंने अलग-अलग स्थानों से प्राप्त नमूनों में कार्बन डाईऑक्साइड का स्तर कृत्रिम रूप से बढ़ाया ताकि यह देखा जा सके कि यदि वायुमंडलीय कार्बन डाईऑक्साइड 700 ppm तक पहुंचती है (जो 2075 से 2100 के बीच संभव है), तो वनस्पति-प्लवकों पर क्या प्रभाव पड़ेगा। वैज्ञानिकों ने दो प्रमुख प्रकार के वनस्पति-प्लवकों पर अध्ययन किया: छोटे बैक्टीरियल वनस्पति-प्लवक (Bacterial Phytoplankton), जो पोषक तत्वों की कमी में भी जीवित रहने में सक्षम होते हैं; और बड़े केंद्रकधारी वनस्पति-प्लवक, जिन्हें अधिक पोषक तत्वों की आवश्यकता होती है और वे पर्यावरण में बदलाव के प्रति अधिक संवेदनशील होते हैं।

अध्ययन के निष्कर्ष (Study Findings) चौंकाने वाले थे। छोटे बैक्टीरियल वनस्पति-प्लवकों पर अम्लीयता का कोई खास प्रभाव नहीं पड़ा, लेकिन बड़े वनस्पति-प्लवकों की वृद्धि उष्णकटिबंधीय क्षेत्रों (Tropical Regions) में गर्मियों के दौरान 30 प्रतिशत तक घट गई, जबकि इस समय उनकी वृद्धि अधिक होनी चाहिए थी। ठंडे, पोषक तत्वों से भरपूर क्षेत्रों में यह प्रभाव थोड़ा कम था, क्योंकि गहरे समुद्र से पोषक तत्व ऊपर आते रहते हैं।

वैज्ञानिकों ने यह भी पाया कि महासागर की अम्लीयता (Ocean Acidification Effects) का वनस्पति-प्लवकों पर प्रभाव नाइट्रोजन (Nitrogen Availability) की उपलब्धता से जुड़ा है। नाइट्रोजन वनस्पति-प्लवकों के विकास के लिए एक आवश्यक पोषक तत्व है। जिन क्षेत्रों में पहले से ही नाइट्रेट की मात्रा कम थी, वहां बढ़ती अम्लीयता ने समस्या को और बढ़ा दिया, जिससे बड़े वनस्पति-प्लवकों का विकास कठिन हो गया।

जब इन नमूनों में नाइट्रेट (nitrate) मिलाया गया, तो वनस्पति-प्लवकों की वृद्धि फिर से बढ़ गई। इसका मतलब है कि अम्लीयता (acidification) किसी न किसी तरह वनस्पति-प्लवकों के लिए नाइट्रोजन (nitrogen) को ग्रहण करना मुश्किल बना देती है।

यदि महासागर की अम्लीयता वनस्पति-प्लवकों को प्रभावित करती रही तो इसके गंभीर परिणाम (Severe Consequences) हो सकते हैं। अध्ययन के अनुसार, अगले 50 वर्षों में वनस्पति-प्लवकों की धीमी वृद्धि के कारण महासागर हर साल लगभग 5 ट्रिलियन किलोग्राम कम कार्बन डाईऑक्साइड अवशोषित करेंगे। इससे वातावरण में कार्बन डाईऑक्साइड का स्तर बढ़ेगा और जलवायु परिवर्तन की गति तेज़ हो सकती है।

समस्या को और बढ़ाने वाला एक अन्य कारक बढ़ता समुद्री तापमान (Rising Ocean Temperature) है। गर्म सतही जल (Surface Water) ठंडे, पोषक तत्वों से भरपूर गहरे जल (Deep Ocean Water) के साथ मिश्रित नहीं हो पाता, जिससे सतह पर पोषक तत्वों की कमी हो जाती है। उपग्रह डैटा (satellite data) से पता चला है कि उष्णकटिबंधीय महासागरों में कम पोषक तत्वों वाले क्षेत्र तेज़ी से फैल रहे हैं। 1998 से 2006 के बीच, कम क्लोरोफिल (chlorophyll वनस्पति-प्लवकों की मात्रा का एक प्रमुख संकेतक) वाले क्षेत्र 15 प्रतिशत बढ़ गए। यदि अम्लीयता पोषक तत्व की कमी को और बढ़ाती है तो महासागरीय पारिस्थितिकी तंत्र पर ‘दोहरा आघात’ होगा।

कुछ वैज्ञानिकों का मानना है कि अभी यह कहना जल्दबाज़ी होगी कि वनस्पति-प्लवकों की घटती संख्या निश्चित रूप से महासागर की कार्बन डाईऑक्साइड अवशोषित करने की क्षमता (Carbon Sequestration) को कम करेगी। संभव है कि ठंडे क्षेत्रों, जहां पोषक तत्व अधिक उपलब्ध हैं, में वनस्पति-प्लवक तेज़ी से बढ़ें और उष्णकटिबंधीय क्षेत्रों के नुकसान की भरपाई कर दें। लेकिन, समुद्र वैज्ञानिक मैट चर्च कहते हैं कि समग्र रूप से पृथ्वी के कार्बन चक्र पर इसका सकारात्मक प्रभाव पड़ने की संभावना बहुत कम है।

वैज्ञानिक और अधिक शोध (Further Research) की ज़रूरत पर ज़ोर दे रहे हैं। बहरहाल, इतना स्पष्ट है कि हम जितनी अधिक कार्बन डाईऑक्साइड वातावरण में छोड़ेंगे, महासागरों का संतुलन उतना ही डगमगाएगा। इसलिए कार्बन डाईऑक्साइड उत्सर्जन (CO₂ Emissions) को कम करना अब पहले से कहीं अधिक ज़रूरी हो गया है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.z30nzc9/full/_20250310_on_plankton-1741634337047.jpg

हमारी जोखिमग्रस्त डॉल्फिन की गणना

डॉ. डी. बालसुब्रमण्यन, सुशील चंदानी

विगत 3 मार्च को पर्यावरण, वन एवं जलवायु परिवर्तन मंत्रालय (ministry of environment, forest and climate change) ने भारतीय नदियों में पाई जाने वाली डॉल्फिन (ganges river dolphin) की जनगणना सम्बंधी अध्ययन के निष्कर्ष जारी किए; डॉल्फिन की संख्या 6327 पाई गई है। टारपीडो जैसे शरीर वाले ये चंचल जीव जब भी दिखते हैं, दर्शकों को रोमांचित कर देते हैं। उन्हें देखने लोग उमड़ पड़ते हैं। शहरी किशोर उन्हें ‘प्यारा’ (cute) कहते हैं।

नदी डॉल्फिन (River Dolphin) दो तरह की होती हैं। एक, ऐच्छिक (फैकल्टेटिव) नदी डॉल्फिन, जो खारे पानी और मीठे पानी दोनों में रहती हैं। भारत में, इरावदी (Irrawaddy Dolphin) (या इरावती) डॉल्फिन चिल्का झील (Chilika Lake) के आसपास पाई जाती हैं। यहां लगभग 155 की संख्या में मौजूद ये डॉल्फिन पर्यटकों का प्रमुख आकर्षण हैं, और सुंदरबन (Sundarbans) के पास मौजूद डॉल्फिन भी।

दूसरी, बाध्य (ऑब्लिगेट) नदी डॉल्फिन, जो केवल मीठी जल राशियों में पाई जाती हैं। माना जाता है कि चीन की यांग्त्ज़ी नदी डॉल्फिन (Yangtze River Dolphin) विलुप्त हो गई है, इसे आखिरी बार वर्ष 2007 में देखा गया था। अनोखे गुलाबी रंग वाली अमेज़ॉन नदी की डॉल्फिन (Amazon River Dolphin) 2.5 मीटर से भी अधिक लंबी होती है। लगभग इतनी ही बड़ी गंगा नदी में रहने वाली डॉल्फिन होती है, जो गंगा (Ganga River) और ब्रह्मपुत्र (Brahmaputra River) की मुख्य नदियों और कुछ सहायक नदियों में पाई जाती है।

गंगा डॉल्फिन (Gangetic Dolphin) की निकट सम्बंधी, सिंधु नदी डॉल्फिन (Indus River Dolphin), पंजाब का राजकीय जलीय जीव है। यहां ये डॉल्फिन तरनतारन ज़िले में ब्यास नदी (Beas River) और हरिके आर्द्रभूमि (Harike Wetland) में पाई जाती है। पर्यावरण मंत्रालय के अध्ययन में सिर्फ तीन सिंधु डॉल्फिन मिली हैं, जो इनके अस्तित्व पर मंडराते खतरे (Endangered Species) को दर्शाता है। पाकिस्तान में बहती सिंधु नदी में ये डॉल्फिन सिर्फ 1800 ही जीवित बची हैं।

मटमैले पानी के अनुकूल

डॉल्फिन और दांतों वाली व्हेल (Toothed Whales) के माथे पर एक विशिष्ट मांसल उभार होता है जिसे मेलन (Melon) कहा जाता है। यह एक लेंस की तरह काम करता है जो (प्रकाश को नहीं) ध्वनि को संकेंद्रित करता है, और इकोलोकेशन (Echolocation) में बहुत महत्वपूर्ण भूमिका निभाता है। हमारे यहां पाई जाने वाली नदी डॉल्फिन मटमैले और कम लवण वाले पानी में रहना पसंद करती हैं। गंगा और सिंधु नदी की डॉल्फिन की एक असामान्य विशेषता उनकी कमज़ोर नज़र (blind river dolphin) है। वे इकोलोकेशन द्वारा मार्ग निर्धारण करती हैं और भोजन ढूंढती हैं; इसमें वे अपनी स्वर-रज्जु से खास क्लिक रूपी अल्ट्रासाउंड तरंगें (ultrasound waves) निकालती हैं, और ललाट पर बने मेलन की मदद से आसपास की वस्तुओं से टकराकर लौटने वाली तरंगों की प्रतिध्वनि को महसूस करती हैं। ये डॉल्फिन करवट पर तैरने की प्रवृत्ति भी दिखाती हैं, भोजन की तलाश में नदी के पेंदे को खंगलाने के लिए वे फिन (dorsal fin) का उपयोग करती हैं।

हमारी नदी डॉल्फिन प्रजातियों की आंख बमुश्किल एक सेंटीमीटर चौड़ी है; इसमें एक मोटा कॉर्निया होता है और कोई लेंस नहीं होता है। प्रकाश को दर्ज़ करने के लिए रेटिना में बहुत कम कोशिकाएं होती हैं। और दृश्य संवेदनाओं को मस्तिष्क तक पहुंचाने वाली प्रकाश तंत्रिका बहुत क्षीण होती है, यह बमुश्किल एक तंतु जितनी पतली होती है। ऐसा लगता है कि उनमें दृश्य बोध सिर्फ प्रकाश और प्रकाश की दिशा पता लगाने तक ही सीमित होता है। हमारी नदी डॉल्फिन और समुद्री बॉटलनोज़ डॉल्फिन (bottlenose dolphin) के संवेदना बोध में शामिल मस्तिष्क क्षेत्रों की तुलना करने पर पता चला कि नदी डॉल्फिन का दृष्टि बोध सम्बंधी क्षेत्र असामान्य रूप से छोटा है जबकि उनका श्रवण बोध सम्बंधी क्षेत्र बहुत बड़ा है। यह ध्वनि पर उनकी निर्भरता को दर्शाता है। प्रयोगों में पाया गया है कि सिंधु नदी की डॉल्फिन नायलॉन धागे से लटके 4 मिलीमीटर छोटे बॉल बेयरिंग (ball bearing – छर्रों) की उपस्थिति भी भांप लेती हैं, और उसकी उपस्थिति भांपकर उसकी ओर बढ़ सकती हैं।

गठिया से लेकर मांसपेशीय ऐंठन के उपचार में इस्तेमाल होने वाले तेल का दोहन नदी डॉल्फिन से ही किया जाता है, और उनके इसी उपयोग के चलते उन पर खतरा मंडरा रहा है। अत्यधिक मत्स्याखेट (over fishing) से उनकी भोजन आपूर्ति कम होती है, और अन्य मछलियां के लिए फेंके गए जाल में भी वे फंस जाती हैं। फिर, रासायनिक प्रदूषक (chemical pollution) एक और खतरा पैदा करते हैं।

तेज़ी से परिष्कृत और उन्नत होती जा रही गणना विधियों के बावजूद, नदी डॉल्फिन की आबादी अस्पष्ट बनी हुई है – उनकी संख्या अधिक भी हो सकती है और कम भी। दोनों स्थितियों में से चाहे जो हो लेकिन फिर भी उनकी संख्या बहुत ही कम है। हमें इन अनूठे जीवों के बारे में सार्वजनिक जागरूकता (public awareness) बढ़ाना होगा। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://upload.wikimedia.org/wikipedia/commons/f/f3/Ganges-river-dolphins.jpg

कचरे से ऊर्जा निर्माण फैला सकता है प्रदूषण

सुदर्शन सोलंकी

हाल ही में विश्व बैंक (World Bank) ने गुजरात में कचरे को जलाकर ऊर्जा (waste to energy) बनाने की एक परियोजना को मिलने वाली धनराशि पर रोक लगा दी है। विश्व बैंक की शाखा अंतर्राष्ट्रीय वित्त निगम (International Finance Corporation – IFC) गुजरात में अपशिष्ट से ऊर्जा (waste to energy – WTE) परियोजनाओं के लिए 4 करोड़ डॉलर का कर्ज देने वाली थी।

इस परियोजना पर रोक राज्य के पर्यावरण समूहों (environmental groups) द्वारा लगातार विरोध का परिणाम है। उनका मानना है कि इससे जल (water pollution) व वायु (air pollution) दोनों क्षेत्रों में प्रदूषण फैलेगा। अधिकांश नागरिक संगठनों ने इस परियोजना से होने वाले प्रदूषण को सार्वजनिक स्वास्थ्य (public health) के लिए खतरा बताया है।

परियोजना संयंत्र से लगभग 18,75,000 कारों के उत्सर्जन (carbon emissions) जितना कार्बन डाईऑक्साइड (CO2 emissions) उत्सर्जन होता; यह न सिर्फ आईएफसी के अपने प्रदर्शन मानकों (performance standards) का उल्लंघन है बल्कि कई भारतीय कानूनों का भी उल्लंघन करता है। यह दर्शाता है कि आईएफसी अपने सुरक्षा उपायों और पेरिस समझौते (Paris Agreement) का अनुपालन नहीं कर रहा है।

अपशिष्ट से ऊर्जा (waste to energy) में गैर-नवीकरणीय अपशिष्ट (non-renewable waste) को ऊष्मा (heat), ईंधन (fuel) और बिजली (electricity) तथा ऊर्जा के इस्तेमाल योग्य अन्य रूपों में परिवर्तित किया जाता है। अपशिष्ट से ऊर्जा उत्पादन कई प्रक्रियाओं के माध्यम से हो सकता है; जैसे भस्मीकरण (incineration), गैसीकरण (gasification), पायरोलिसिस (pyrolysis), अवायवीय पाचन (anaerobic digestion) और लैंडफिल गैस रिकवरी (landfill gas recovery)।

डब्ल्यूटीई (WTE) शब्द का उपयोग आम तौर पर भस्मीकरण (incineration) के संदर्भ में किया जाता है, जिसमें ऊर्जा के लिए अति-उच्च तापमान (high-temperature combustion) पर कचरे को जलाया जाता है। आधुनिक भस्मीकरण सुविधाएं पर्यावरण में उत्सर्जन (emission control) को रोकने के लिए प्रदूषण नियंत्रण उपकरणों का उपयोग करती हैं। वर्तमान में भस्मीकरण एकमात्र डब्ल्यूटीई तकनीक है जो आर्थिक (economically viable) और वाणिज्यिक रूप से व्यवहार्य साबित हुई है।

डब्ल्यूटीई का एक और उदाहरण अवायवीय पाचन (anaerobic digestion) है, जो एक पुरानी लेकिन प्रभावी तकनीक है जो कार्बनिक पदार्थों (organic waste) को जैविक रूप से खाद (compost) के साथ-साथ ऊर्जा के लिए बायोगैस (biogas) में परिवर्तित करती है।

वर्तमान में, एबेलॉन (Abellon) द्वारा संचालित एक डब्ल्यूटीई भस्मक (WTE incinerator) जामनगर में चालू है। स्थानीय लोगों के अनुसार इससे बहुत ज़्यादा प्रदूषण (pollution) फैलता है। सेंटर फॉर फायनेंशियल अकाउंटेबिलिटी (Center for Financial Accountability – CFA) ने कहा है, “जामनगर में एबेलॉन के चालू डब्ल्यूटीई भस्मक संयंत्र ने नवंबर 2021 में परिचालन शुरू होने के बाद से ही वायु प्रदूषण (air pollution), ध्वनि प्रदूषण (noise pollution) और त्वचा रोग (skin diseases), अस्थमा (asthma), आंखों में जलन (eye irritation) आदि स्वास्थ्य समस्याओं का कारण बनकर अपने आसपास रहने वाले 25,000 लोगों पर उल्लेखनीय नकारात्मक प्रभाव डाला है।”

डब्ल्यूटीई संयंत्र (WTE plant) की जगह भारत को टिकाऊ अपशिष्ट प्रबंधन (sustainable waste management) समाधानों पर ध्यान केंद्रित करना चाहिए। इसमें एकल-उपयोग प्लास्टिक (single-use plastic) को कम करना, अपशिष्ट पृथक्करण (waste segregation) को बढ़ावा देना, संग्रह (collection), पुन: उपयोग (reuse) और सुरक्षित व समावेशी रीसायक्लिंग सिस्टम (inclusive recycling system) जैसे समाधानों को अपनाना चाहिए। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.eia.gov/energyexplained/biomass/images/wastetoenergy.png

भारतीय हिमालय क्षेत्र में जलवायु परिवर्तन की चुनौतियां

कुमार सिद्धार्थ

भारतीय हिमालय क्षेत्र में जलवायु परिवर्तन (climate change in Himalayas) का प्रभाव महज भविष्य की चिंता नहीं रह गया है, बल्कि यह वर्तमान की एक गंभीर चुनौती बन गया है। हिमालय क्षेत्र न केवल भारत की जलवायु (Indian climate) और पारिस्थितिकी तंत्र (ecosystem) के लिए महत्वपूर्ण है, बल्कि यह देश के लाखों लोगों की आजीविका और जल स्रोतों (water resources) का आधार भी है।

अज़ीम प्रेमजी विश्वविद्यालय, बैंगलुरु के जलवायु प्रकोष्ठ द्वारा प्रकाशित एक रपट जलवायु परिवर्तन के मुख्य प्रभावों, उनके सामाजिक-आर्थिक परिणामों(socio-economic impact), और अनुकूलन रणनीतियों पर गहन दृष्टि प्रदान करती है। रपट के अनुसार, जलवायु परिवर्तन से हिमालयी ज़िलों में तापमान, वर्षा (rainfall pattern) और प्राकृतिक आपदाओं (natural disasters) के स्वरूप में बड़े बदलाव देखे जा रहे हैं।

जलवायु परिवर्तन न केवल पर्यावरण को बल्कि समाज, अर्थव्यवस्था और परिवारों के दैनिक जीवन को गहराई से प्रभावित करता है। भारत में मानसून का बदलता स्वरूप (monsoon pattern)  और तीव्र बारिश की घटनाएं कृषि, जल संसाधनों (water resources) और मानव जीवन (human life) पर गंभीर असर डाल रही हैं। रपट इस बात को रेखांकित करती है कि हमारे देश में जो सबसे वंचित और कमज़ोर वर्ग हैं, वे ही इस संकट का सबसे अधिक खामियाजा भुगत रहे हैं।

इस रपट में दिए गए आंकड़े ऐसे जलवायु मॉडलों पर आधारित हैं जो बहुत सटीक जानकारी देते हैं। ये मॉडल भारतीय हिमालय क्षेत्र के लिए 25×25 किलोमीटर के क्षेत्रों के लिए जलवायु अनुमान पेश करते हैं। इन मॉडलों में इंटरगवर्नमेंटल पैनल ऑन क्लाइमेट चेंज (IPCC) द्वारा तैयार किए गए साझा सामाजिक-आर्थिक मार्गों (SSPs) का उपयोग किया गया है, जो भविष्य की जलवायु परिस्थितियों का अनुमान लगाने में मदद करते हैं।

रपट के अनुसार, वर्ष 2021-2040 के बीच हिमालय क्षेत्र में औसत तापमान (average temperature) में 1.5 डिग्री सेल्सियस तक वृद्धि होने की संभावना है। पश्चिमी हिमालयी ज़िलों में यह वृद्धि 1.7 डिग्री सेल्सियस तक पहुंच सकती है। तापमान वृद्धि से गर्मियों में ग्रीष्म लहरों (heat waves) की अवधि लंबी होने और उनकी आवृत्ति अधिक होने की संभावना है। यह न केवल पर्यावरण पर, बल्कि कृषि, जल स्रोतों और मानव स्वास्थ्य पर भी नकारात्मक प्रभाव डालेगा।

हिमालयी सर्दियों में अब लंबे शुष्क काल (dry period) देखे जा रहे हैं। सर्दियों के न्यूनतम तापमान में 2.1 डिग्री सेल्सियस तक वृद्धि होने की संभावना है, जिससे बर्फ की परत (ice sheet) पतली हो सकती है। इसका प्रभाव जलाशयों और कृषि पर पड़ रहा है। जल की कमी के कारण रबी फसलों (rabi crops) और पनबिजली उत्पादन पर नकारात्मक प्रभाव पड़ता है। बर्फ पिघलने पर घराट (पनचक्की) जैसे पारंपरिक साधन अब अनिश्चित हो गए हैं।

ग्लेशियरों के तेज़ी से पिघलने (melting glaciers) के कारण जलाशयों के लिए खतरा उत्पन्न हो रहा है और हिमनद झील (glacial lake) विस्फोट बाढ़ की घटनाएं बढ़ा सकते हैं। उदाहरण के लिए वर्ष 2023 में सिक्किम की दक्षिण ल्होनक झील में ऐसा ही एक उदाहरण देखने में आया। हिमाचल प्रदेश के बागवान शिकायत करते हैं कि कम पड़ी सर्दियों के कारण सेबों का रंग और गुणवत्ता प्रभावित हो रही है।

जलवायु परिवर्तन हिमालय क्षेत्र की कृषि (himalayan farming area) और आजीविका (livelihood) पर गहरा प्रभाव डाल रहा है। तापमान और वर्षा के असामान्य पैटर्न के कारण पारंपरिक फसल चक्र प्रभावित हो रहा है। उदाहरण के लिए, लद्दाख में खुबानी (apricot production) उत्पादन तेज़ी से प्रभावित हो रहा है, और कुछ क्षेत्रों में नई फसलों की खेती को बढ़ावा मिला है। पश्चिमी हिमालयी ज़िलों में गेहूं (wheat) और मक्के (maize) की पैदावार में कमी दर्ज की जा सकती है, जबकि उच्च तापमान के कारण सेब उत्पादन (apple production) के लिए उपयुक्त क्षेत्र अधिक ऊंचाई की ओर स्थानांतरित हो रहे हैं।

मौसम की अनियमितता (vagaries of weather) हिमालय क्षेत्र के लिए एक बड़ी चुनौती बन गई है। पश्चिमी हिमालयी ज़िलों में दक्षिण-पश्चिम मानसून के दौरान 10-20 फीसदी अधिक वर्षा होगी, जबकि पूर्वी ज़िलों में कमी देखी जा सकती है। भारी बारिश के कारण अचानक बाढ़ (flash floods) और भूस्खलन (landslides) जैसी आपदाएं बढ़ रही हैं। उदाहरण के लिए वर्ष 2013 में उत्तराखंड में आई बाढ़ ने हज़ारों लोगों की जान ली थी और बुनियादी ढांचे को भारी क्षति पहुंचाई थी।

जलवायु परिवर्तन के प्रभाव सबसे अधिक समाज के कमज़ोर वर्गों (vulnerable group) पर पड़ रहे हैं। गुज्जर जैसे समुदाय, जो अपने मवेशियों के लिए चारागाहों पर निर्भर हैं, अब अधिक दूरी तय करने के लिए मजबूर हैं। जम्मू-कश्मीर के गुज्जर समुदाय (gujjar community) की शाहनाज़ अख्तर कहती हैं, “हमारे पारंपरिक प्रवास मार्ग अब बदल गए हैं। अनियमित बारिश (irregular rainfalls) और सूखा (draught) हमारे लिए बड़ी चुनौती बन गई है, जिससे हमें जल स्रोतों के लिए बहुत दूर जाना पड़ता है।” मेघालय की रसिन मोहसिना शाह कहती हैं, “गर्मियों में बढ़ती आर्द्रता और बदलते मौसम ने यहां के जलवायु संतुलन को बदल दिया है। अब वह ठंडक महसूस नहीं होती जो पहले होती थी।”

हिमालयी नदियां, जैसे ब्रह्मपुत्र(brahmaputra), गंगा(ganga) और यमुना(yamuna), इस क्षेत्र की जीवनरेखा हैं। जलवायु परिवर्तन के कारण इन नदियों के प्रवाह में अस्थिरता देखी जा रही है। जल संसाधन प्रबंधन के लिए स्थानीय जल स्रोतों का संरक्षण और पुनरुद्धार आवश्यक है। बावड़ी और तालाब जैसे पारंपरिक जल स्रोतों का पुनरुद्धार (revive) किया जाना चाहिए। अधिक वर्षा वाले क्षेत्रों में मानसूनी जल को संग्रहित कर सूखे के दौरान उपयोग किया जा सकता है। इसके अलावा, नदियों के प्रवाह (river flow) को नियंत्रित करने और उनके किनारों पर पारिस्थितिकी को संरक्षित रखने के लिए प्रभावी नीतियां बनाई जानी चाहिए।

जलवायु परिवर्तन के कारण आपदाओं (disasters) की बढ़ती आवृत्ति और तीव्रता को देखते हुए प्रभावी आपदा प्रबंधन नीतियां आवश्यक हैं। भूस्खलन, बाढ़ और अन्य प्राकृतिक आपदाओं के लिए सटीक और समय पर चेतावनी प्रणाली विकसित करना एक प्रमुख कदम है। संवेदनशील क्षेत्रों में बुनियादी ढांचों (basic infrastructure) का निर्माण आपदा-रोधी मानकों के अनुसार किया जाना चाहिए। आपदा प्रबंधन (disaster management) में स्थानीय समुदायों की सक्रिय भागीदारी सुनिश्चित करनी चाहिए, जिससे वे आपदाओं से निपटने के लिए सशक्त बन सकें। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://publications.azimpremjiuniversity.edu.in/5859/1/web-version-IHR-20112024.pdf

गर्म होते शहरों में चूहों की बढ़ती फौज

हरों में चूहों की बढ़ती आबादी (rat infestation) एक गंभीर समस्या बनती जा रही है, जिससे बीमारियों (diseases) और आर्थिक नुकसान (economic loss) का खतरा बढ़ रहा है।  अनुमान है कि अकेले अमेरिका में चूहों से जुड़ी समस्याओं के कारण हर साल करीब 3000 अरब रुपए का आर्थिक नुकसान होता है। लेकिन अलग-अलग शहरों में इनके प्रकोप की तुलना के लिए ठोस आंकड़ों की कमी है।

इस सम्बंध में युनिवर्सिटी ऑफ रिचमंड (university of richmond) के शहरी पारिस्थितिकीविद जोनाथन रिचर्डसन द्वारा साइंस एडवांसेज़(Science advances) में प्रकाशित एक अध्ययन में बताया गया है कि जलवायु परिवर्तन(climate change), जनसंख्या वृद्धि (Population growth) और घटते हरित क्षेत्र (declining green spaces) चूहों की बढ़ती संख्या के मुख्य कारण हैं। तापमान बढ़ने और बगीचों व खुले इलाकों को रिहायशी और व्यावसायिक क्षेत्रों में बदलने से चूहों को अनुकूल परिस्थितियां (favourable conditions) मिल रही हैं।

चूहे बहुत चालाक और अनुकूलनशील जीव (adaptive creature) हैं, जो हज़ारों सालों से इंसानों के साथ रह रहे हैं। वे कचरे, सीवर और सड़क किनारे मिट्टी के छोटे-छोटे टुकड़ों का इस्तेमाल बिल बनाने(nesting) और भोजन प्राप्त (food scavenging) करने के लिए बखूबी कर लेते हैं। 

रिचर्डसन के अध्ययन में पाया गया कि जिन शहरों में तापमान तेज़ी से बढ़ रहा है और जनसंख्या में वृद्धि हो रही है, वहां चूहों की संख्या भी तेज़ी से बढ़ रही है। ठंड का मौसम (cold weather) आम तौर पर चूहों के प्रजनन (rat breeding) और भोजन खोजने की गतिविधियों को धीमा कर देता है। लेकिन गर्म जलवायु में वे तेज़ी से प्रजनन करते हैं और आसानी से भोजन जुटा लेते हैं। इसके अलावा शहरी इलाकों की अधिक जनसंख्या (high urban population) का मतलब है अधिक रेस्टोरेंट, कूड़ेदान और कचरा, जो चूहों के लिए पर्याप्त भोजन स्रोत उपलब्ध कराते हैं।

अध्ययन में शामिल 16 शहरों में से वॉशिंगटन डी.सी. (Washington D.C.) सबसे ज़्यादा प्रभावित पाया गया। पिछले 20 वर्षों में यहां चूहों की संख्या बोस्टन (boston) की तुलना में तीन गुना और न्यूयॉर्क सिटी (New York city) की तुलना में 1.5 गुना तेज़ी से बढ़ी है हालांकि अमेरिका का नगरीय प्रशासन हर साल चूहों पर नियंत्रण के लिए करीब 50 करोड़ डॉलर (4250 करोड़ रुपए) खर्च कर रहा है। 

कुछ शहरों ने ज़रूर चूहों की संख्या को सफलतापूर्वक कम भी किया है। इनमें टोक्यो(tokyo), लुइविले (केंटकी) (Louisville, Kentucky)  और न्यू ऑरलियन्स (New Orleans) शामिल हैं, जिससे यह पता चलता है कि शहरी क्षेत्रों में चूहों की समस्या को कैसे नियंत्रित किया जा सकता है। जैसे: 

1. सख्त कचरा प्रबंधन (strict garbage management)– टोक्यो में कचरे के प्रभावी निपटान और कड़े नियमों के कारण चूहों को पनपने के लिए भोजन और आश्रय नहीं मिल पाता है। 

2. जागरूकता अभियान (awareness campaigns)– न्यू ऑरलियन्स में लोगों को सिखाया जाता है कि वे अपने घरों और कचरा क्षेत्रों को चूहों से मुक्त कैसे रखें और चूहे दिखने की सूचना जल्द से जल्द दें।

3. सामाजिक दबाव (social pressure)– टोक्यो में सोशल मीडिया (social media) पर चूहों की समस्या सामने आते ही होटलों और व्यवसायों द्वारा तुरंत कार्रवाई की जाती है।

4. दीर्घकालिक निगरानी (long term monitoring)– चूहों की संख्या पर सतत नज़र रखने से यह समझने में मदद मिलती है कि कौन से उपाय प्रभावी हैं और कहां सुधार की आवश्यकता है।

रिचर्डसन की टीम के मुताबिक चूहों की समस्या पर काबू पाने के लिए अधिक संसाधन लगाने और नियंत्रण टीमों का विस्तार करने की आवश्यकता है। नगरीय प्रशासन और नागरिक मिलकर कचरा प्रबंधन, जागरूकता और बेहतर शहरी योजनाओं (waste management, awareness and urban planning)को प्राथमिकता दें, तो समस्या को काफी हद तक नियंत्रित किया जा सकेगा। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://nypost.com/wp-content/uploads/sites/2/2025/01/general-view-rat-coming-sidewalk-19299281.jpg?resize=1536,1069&quality=75&strip=all