प्रतिरक्षा तंत्र और शरीर की हिफाज़त – 6 – विनीता बाल, सत्यजीत रथ

प्रतिरक्षा तंत्र बेतरतीबी से निर्मित खजाने से कैसे काम चलाता है?

प्रतिरक्षा तंत्र यह कैसे सुनिश्चित करता है कि पहचान के लिए जो चाभियां वह बना रहा है, वे किसी गलत ताले को नहीं खोलेंगी और खुद ही बीमारी का कारण नहीं बन जाएंगी?

ज़ाहिर है कि यदि प्रतिरक्षा तंत्र को इस तरह तैयार किया गया है कि वह जिन लक्ष्यों को पहचाने उनके खिलाफ ज़ोरदार कार्रवाई करे, तो हम यह तो नहीं चाहेंगे कि वह किसी ऐसी चीज़ को लक्ष्य के रूप में पहचान ले जिसकी हमें ज़रूरत है, जैसे हमारी लिवर की कोशिकाएं। लेकिन हमने कहा था कि विकसित होता प्रतिरक्षा खजाना तो मूलत: बेतरतीब होता है। इसलिए यह संभावना रहती ही है कि उसमें ऐसे ग्राही तैयार हो जाएंगे जो हमारे अपने शरीर के सामान्य हिस्सों यानी ‘स्व’ को लक्ष्य के रूप में पहचान लेंगे।

अब चूंकि हम ग्राही-निर्माण प्रणाली की बेतरतीब व्यवस्था को गंवाना नहीं चाहते, इसलिए हम इस समस्या में उलझ जाते हैं कि ऐसी बी तथा टी कोशिकाएं बन जाएंगी जो स्व-पहचान ग्राहियों से लैस होंगी। यदि हम ऐसी कोशिकाओं को बनने से रोक नहीं सकते, तो हम यही उम्मीद कर सकते हैं कि बनने के बाद उन्हें ठप कर दिया जाएगा। इसके लिए पहली ज़रूरी बात यह होगी कि उन कोशिकाओं को पहचाना जाए जिन पर ऐसे ग्राही हैं, जो अपने शरीर के किसी घटक को पहचानते हों। इसके बाद किसी युक्ति से उन्हें ठप करना होगा। प्रतिरक्षा विज्ञान की अत्यंत प्रतिष्ठित ‘मूलभूत मान्यता’ यह है कि प्रतिरक्षा तंत्र ‘अपने’ और ‘पराए’ में भेद करता है। यह काम छंटाई जैसी साधारण प्रक्रियाओं पर टिका है हालांकि प्रतिरक्षा वैज्ञानिक इसे ‘नकारात्मक चयन’ कहकर महिमामंडित करते हैं।

इसका मतलब है कि ‘अपने-पराए’ का भेद संरचना के किसी सामान्य नियम के तहत नहीं किया जाता। प्रतिरक्षा तंत्र में ऐसा कोई पूर्व निर्धारित मापदंड नहीं है जो उसे बताए कि वे अणु कौन-से हैं जो शरीर में ‘सामान्यत:’ बनते हैं। इनकी परिभाषा शुद्ध रूप से अनुभव-आधारित है: यदि कोई चीज़ लगातार आसपास नज़र आती है, शरीर में सब जगह मिलती है और किसी घुसपैठिए के कामकाज से जुड़ा कोई चिंह नहीं है तो बहुत संभावना है कि यह ‘अपना’ अणु होगा। अन्यथा इसके पराया होने की संभावना ज़्यादा है।

प्रतिरक्षा तंत्र द्वारा ‘अपने’ की पहचान

सवाल यह है कि प्रतिरक्षा तंत्र ऐसे अनुभव-आधारित फैसले कैसे करता है? एक तरीका यह है कि यदि कोई अणु लगातार उपस्थित हो तो काफी संभावना है कि उसका सामना ‘नवनिर्मित’ बी या टी कोशिका से जन्म लेते ही हो जाएगा। तो एक नियम यह है कि यदि कोई बी या टी कोशिका लड़कपन (यानी बनने के कुछ ही समय बाद) में ही किसी लक्ष्य को पहचान ले, तो वह बी या टी कोशिका हानिकारक है और उसे खामोश हो जाना चाहिए। यदि उसे (बी या टी कोशिका को) अपना लक्ष्य प्रौढ़ होने के बाद नज़र आए तो संभावना यह है कि वह लक्ष्य पराया होगा और ऐसी कोशिकाओं को उस लक्ष्य के विरुद्ध पूरी ताकत से प्रतिक्रिया देना चाहिए। दूसरे शब्दों में बी व टी कोशिकाओं के विकास के दौरान एक अवधि ऐसी होती है (कोशिका की सतह पर ग्राही के अभिव्यक्त होने के तुरंत बाद) जब किसी एंटीजन से सामना होने पर वे सक्रिय होने की बजाय निष्क्रिय हो जाएंगी।

ज़ाहिर है, इसमें कई भूल-चूक की संभावना है। यदि शरीर में कोई संक्रमण चल रहा है, जिसके अणु (एंटीजन) नवजात प्रतिरक्षा कोशिकाओं को नज़र आ जाते हैं, तो ऐसी प्रतिरक्षा कोशिकाओं को छांटकर अलग कर दिया जाएगा। वे उस एंटीजन के विरुद्ध कार्रवाई करने की बजाय निष्क्रिय हो जाएंगी। ऐसा गर्भाशय में पल रहे बच्चे के मामले में होता है जो अपनी मां से कोई संक्रमण (जैसे हिपैटाइटिस बी वायरस) हासिल कर लेता है।

दूसरा, शरीर के सारे अणु लगातार अस्थि मज्जा या थायमस ग्रंथि में आते-जाते तो नहीं रह सकते। शरीर के कई अणु कोशिकांतर्गत प्रोटीन के रूप में होते हैं। या कुछ अणु मात्र कुछ विशिष्ट ऊतकों में प्रकट होते हैं। इसलिए संभावना है कि अस्थि मज्जा या थायमस ग्रंथि में रहते हुए बी या टी कोशिकाएं इनके संपर्क में न आएं। लेकिन जब वे अपनी जन्मस्थली से निकलकर व्यापक शरीर में पहुंचेंगी तो उनका सामना इन अणुओं से होगा। यदि ऐसा हुआ, तो चाहे ये अणु शरीर के दृष्टिकोण से ‘अपने’ हों, लेकिन प्रतिरक्षा तंत्र इन्हें ‘पराया’ मानेगा और हमला कर देगा। यह तो स्वास्थ्य व खुशहाली के लिए नुकसानदायक होगा। तो एक और पहचान व्यवस्था की ज़रूरत है। क्या किया जाए?

प्रतिरक्षा तंत्र कैसे तय करे कि किस पर हमला करे और किसे छोड़ दे?

हमने ऊपर कहा था कि ‘अपने’ को पहचानने का एक और तरीका यह है कि ‘अपने’ पर सामान्यत: किसी घुसपैठिए के कामकाज का कोई चिंह नहीं होगा। यह चीज़ एक अन्य समस्या से जुड़ी है जिसका ज़िक्र हम पहले कर चुके हैं। इसका सम्बंध प्रतिरक्षा तंत्र के पहचान मॉडल से है। यदि किसी चीज़ पर कोई ‘बिल्ला’ चिपका है, तो ज़रूरी नहीं कि वह चीज़ हानिकारक ही हो। लिहाज़ा, हर ‘बिल्ले’ पर टूट पड़ना संसाधन और श्रम की बरबादी होगी। तो प्रतिरक्षा तंत्र कैसे तय करे कि कब प्रतिक्रिया दे और कब अनदेखा करे?

दरअसल, यह दिक्कत एक अन्य वजह से और मुश्किल हो जाती है – ध्यान रखें कि प्रतिरक्षा तंत्र को अलग-अलग रोगजनकों के बारे में यह भी फैसला करना होता है कि कार्रवाई के किस मार्ग का उपयोग करे। वायरस को थामने के लिए उसे संक्रमित कोशिका को मारना होता है; कोशिका से बाहर मौजूद संक्रमण के लिए विशिष्ट किस्म की एंटीबॉडी बनानी होती हैं; और विकल्पी परजीवियों के लिए उन भक्षी-कोशिकाओं को सक्रिय करना होता है जिनके अंदर ये परजीवी बैठे हैं।

इनमें से कोई भी प्रतिक्रिया हर किस्म के संक्रमण के विरुद्ध कारगर नहीं होंगी। तो प्रतिरक्षा तंत्र कैसे तय करेगा कि कब क्या करना है? और इसके साथ टीकों की बात जोड़ लें, तो हम प्रतिरक्षा तंत्र को कैसे तैयार करेंगे कि वह सही किस्म की शक्तिशाली प्रतिक्रिया दे? आप देख ही सकते हैं कि प्रतिरक्षा खज़ाने की छंटाई करना टी और बी कोशिकाओं के संदर्भ में सही निर्णय करने की सामान्य समस्या का ही हिस्सा है।

इस समस्या से निपटने का एक ही वास्तविक तरीका है – कि किसी लक्ष्य की पहचान के बाद प्रतिरक्षा तंत्र की प्रतिक्रिया को संदर्भ के भरोसे छोड़ दिया जाए। यानी यह संदर्भ ऐसे संकेतों से बना होगा जो यह नहीं बताएंगे कि लक्ष्य क्या है, बल्कि यह बताएंगे कि वह लक्ष्य ‘खतरे’ का द्योतक है या नहीं ऐसा होने पर प्रतिरक्षा कोशिका को चुप बैठने की बजाय कुछ करना चाहिए। ज़ाहिर है, सबसे सरल संदर्भ संकेत वे होंगे जिनका उपयोग जन्मजात प्रतिरक्षा तंत्र करता है – जैसे कि भक्षी कोशिकाएं अपने ढंग से परजीवियों से निपटने में करती हैं। कोशिकाओं की सतह पर उपस्थित अणु तथा रुाावित प्रोटीन दोनों का स्तर संक्रमण से प्रेरित होता है, ऐसे संदर्भ जनित संकेत होते हैं और यदि लक्ष्य की पहचान ऐसे संकेतों की अनुपस्थिति में हो तो बी और टी कोशिकाएं कोई प्रतिक्रिया नहीं देंगी बल्कि खामोश कर दी जाएंगी। यह एक सफल नकारात्मक चयन होगा।

बहरहाल, नकारात्मक चयन की ये सारी शैलियां लगभग ही ठीक बैठती हैं, और अपेक्षा की जानी चाहिए कि इनमें कई खामियां होंगी। दरअसल, सामान्य व्यक्तियों में भी स्व-सक्रिय प्रतिरक्षा कोशिकाएं बहुत दुर्लभ नहीं होतीं। तो सवाल उठता है कि ऐसी स्व-सक्रिय प्रतिरक्षा कोशिकाएं बार-बार आत्म-प्रतिरक्षा बीमारियां पैदा क्यों नहीं करतीं। इस सवाल का जवाब इस बात में छिपा है कि संदर्भ-जनित संकेत प्रतिरक्षा प्रतिक्रिया का सूक्ष्म प्रबंधन करते हैं।

ठप कर दी गई बी और टी कोशिकाओं का क्या होता है?

यह कहना तो ठीक है कि आप बी या टी कोशिका को ठप कर देंगे। लेकिन ठप करने का ठीक-ठीक मतलब क्या है? मोटे तौर पर प्रतिरक्षा तंत्र के सामने दो विकल्प हैं। एक तो यह है कि जिस कोशिका को ठप किया जाना है उसे उकसाया जाए कि वह अपने मारक जीन्स को सक्रिय करके खुदकुशी कर ले। इसका मतलब होगा कि वह स्व-सक्रिय कोशिका भौतिक रूप से मिटा दी जाएगी और फिर कभी समस्या पैदा नहीं करेगी। नवजात बी व टी कोशिकाओं द्वारा स्व-लक्ष्य की कुशलतापूर्व पहचान और साथ में खतरे के सशक्त संदर्भ-जनित संकेत मौजूद हों, तो सफाए का यही तरीका अपनाया जाता है।

दूसरी ओर, यदि संकेत (खास तौर से संदर्भ-जनित संकेत) इतने सशक्त न हों कि वे कोशिका को खुदकुशी तक खींच लाएं, तो उस कोशिका को कोल्ड स्टोरेज में डालकर खामोश रखा जा सकता है। कहने का मतलब कि उसके साथ ऐसी छेड़छाड़ की जाती है कि वह काफी समय तक किसी चीज़ के प्रति प्रतिक्रिया नहीं दे पाएगी। यह एक ऐसा उपचार है जो सिर्फ नवजात कोशिकाओं पर नहीं बल्कि सारी बी व टी कोशिकाओं पर किया जा सकता है। तो यह छंटाई का एक सामान्य तरीका है।

लेकिन यह उपचार बार-बार करते रहना होगा, और इसलिए ये संभावित स्व-सक्रिय बी व टी कोशिकाएं शरीर के लिए हमेशा एक खतरे के रूप में उपस्थित रहेंगी। बहरहाल, प्रतिरक्षा तंत्र के पास इनसे निपटने के उपाय हैं जो इन कोशिकाओं के ग्राहियों में फेरबदल कर सकते हैं। ऐसा फेरबदल करने पर ये स्व की बजाय पराए लक्ष्यों को पहचानने लगती हैं। यानी कोल्ड स्टोरेज विकल्प का कुछ फायदा तो है। ज़ाहिर है, यदि ग्राही को ही बदल दिया गया तो इस कोशिका को ठप करने का उपचार फिर शायद काम न करे क्योंकि यह उपचार इस बात पर निर्भर है कि कोई ग्राही शरीर में सदा उपस्थित किसी चीज़ को पहचाने। यदि ग्राही बदल गया तो ये कोशिकाएं फिर से सक्रिय हो जाएंगी और संभावना है कि किसी काम आएं।

तो हमने देखा कि विभिन्न सम्बंधित तंत्रों से कोशिकाएं और प्रक्रियाएं उधार लेकर प्रतिरक्षा तंत्र अपने लिए ऐसे जुगाड़ करता है कि उसे काम करने में मदद मिलती है – किसी भी बाहरी घुसपैठिए के खिलाफ काफी लक्ष्योन्मुखी ढंग से। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://2rdnmg1qbg403gumla1v9i2h-wpengine.netdna-ssl.com/wp-content/uploads/sites/3/2016/11/immuneSystem-1190000241-770×553-1-650×428.jpg

युरोपीय लोगों के आगमन से पर्यावरण को नुकसान

गभग पांच सौ वर्ष पूर्व युरोपीय खोजकर्ताओं ने न केवल कैरेबिया के मूल निवासियों के जीवन को तहस-नहस किया बल्कि पूरे पारिस्थितिकी तंत्र को भी काफी नुकसान पहुंचाया था। एक नए अध्ययन से पता चला है कि इस द्वीप पर रहने वाले लगभग 70 प्रतिशत सांप और छिपकलियां खत्म हो चुके हैं। इसके पीछे उपनिवेशकों के साथ आए बिल्ली, चूहों और रैकून को ज़िम्मेदार बताया जा रहा है। कुछ वैज्ञानिकों के अनुसार कमज़ोर प्रजातियों के लिए समस्याएं मनुष्यों के कारण नहीं बल्कि मनुष्यों की पर्यावरण से परस्पर क्रिया से उत्पन्न हुई हैं।

गौरतलब है कि पांडा जैसे लोकप्रिय जीवों की तुलना में छिपकली, सांप और अन्य सरिसृपों और उनके इतिहास के बारे में हम कम ही जानते हैं। फिर भी ऐसा माना जाता है कि ये प्रजातियां पारिस्थितिकी तंत्र में एक महत्वपूर्ण भूमिका निभाती हैं। ये जीव पौधों का परागण करते हैं, बीजों को फैलाते हैं, छोटे जीवों को खाते हैं और स्वयं भी बड़े जीवों द्वारा खाए जाते हैं। इनमें से कुछ तो धरती के नीचे बिलों में रहते हुए पूरे भूपटल को ही बदल देते हैं।

ऐसे में मैक्स प्लांक इंस्टीट्यूट फॉर साइंस ऑफ ह्यूमन हिस्ट्री के पुराजंतु वैज्ञानिक कोरंतन बुशातों ने कैरेबिया की संवेदनशील जैव विविधता के अध्ययन हेतु अपने सहयोगियों के साथ पूर्वी कैरेबिया स्थित गुआदेलूप के छह द्वीपों पर पहले से खुदाई की गई गुफाओं का अध्ययन किया। ये छह द्वीप पूर्व में फ्रांस के अधीन थे। टीम ने गुफाओं के फर्श की विभिन्न परतों को हटाते हुए हड्डियों के हज़ारों टुकड़े एकत्रित किए जिनमें से कुछ तो तीन मिलीमीटर से भी छोटे थे।  

खोजे गए 43,000 जीवाश्मों में से शोधकर्ताओं ने 16 विभिन्न प्रकार की छिपकलियों और सांपों की पहचान की। जीवाश्मों को चार समूहों में विभाजित किया गया: 32,000 से 11,000 वर्ष पुराने, 11,650 से 2540 वर्ष पुराने, 2450 से 458 वर्ष पुराने (वह अवधि जब मूल निवासी बस चुके थे लेकिन युरोपीय नहीं पहुंचे थे) और 458 से वर्तमान समय तक।

साइंस एडवांसेज़ में प्रकाशित रिपोर्ट के अनुसार एक द्वीप पर 11,000 वर्ष पूर्व चार प्रकार के सांप और पांच प्रकार की छिपकलियां पाई जाती थीं जो अब नहीं पाई जातीं। इनकी जगह छिपकलियों की चार अन्य प्रजातियों ने ली, जिनमें से दो प्रजातियां लगभग 2000 वर्ष पूर्व प्रकट हुई थीं जबकि अन्य दो युरोपियों के आगमन के बाद। संभावना है कि ये कैरेबिया के अन्य हिस्सों से आई हैं। बुशातों और उनकी टीम ने गुआदेलूप में छिपकलियों और सांपों के 40,000 वर्ष के जैव विकास इतिहास पर ध्यान दिया। उन्होंने पाया कि 1493 में क्रिस्टोफर कोलंबस के आने से पूर्व कैरेबिया में 13 सरिसृप प्रजातियां उपस्थित थीं। जलवायु परिवर्तन और मूल निवासियों की उपस्थिति उनके लिए कोई समस्या नहीं रही।

लेकिन इनकी लगभग आधी आबादी युरोपीय लोगों के आने के बाद गायब हो गई, जिनमें सांप की तीन और छिपकलियों की पांच प्रजातियां थीं। कुछ द्वीपों पर तो 70 प्रतिशत तक सरिसृप प्रजातियां खत्म हो गर्इं। ऐसी आशंका है कि छिपकलियां या तो युरोपीय लोगों द्वारा लाए गए आक्रामक जीवों का शिकार हो गर्इं या फिर गन्ने की खेती के कारण उन्होंने अपना प्राकृतवास खो दिया।

हालांकि, यह अभी तक स्पष्ट नहीं है कि इस तरह की क्षति का पारिस्थितिकी तंत्र पर क्या प्रभाव पड़ सकता है। इस निष्कर्ष से वैज्ञानिकों के बीच प्रचलित एक आम सिद्धांत को बल मिलता है कि जब तक देशज लोगों ने अपनी पारंपरिक प्रथाओं के साथ भूमि प्रबंधन किया है, तब तक जैव विविधता भी मनुष्यों के साथ-साथ सहजता से उपस्थित रह सकी है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/article_main_image_-1280w__no_aspect/public/Iguana_Guadalupe_1280x720.jpg?itok=cYa__1km

वानिकी का विवादास्पद प्रयोग

नों की कटाई जब चिंता का बड़ा विषय है, तब संयुक्त राज्य अमेरिका में दुनिया के सबसे बड़े वानिकी प्रयोग को 22 अप्रैल को हरी झंडी मिल गई है। प्रयोग के तहत यह आकलन करने की कोशिश की जाएगी कि जैव विविधता का संरक्षण करते हुए लकड़ी के उत्पादन के सबसे अच्छे तरीके क्या हो सकते हैं। प्रयोग के लिए वनों की नियंत्रित कटाई करने की अनुमति भी मिलेगी।

परियोजना की शुरुआत करने वाले ओरेगन स्टेट युनिवर्सिटी (ओएसयू) के थॉमस डीलुका का कहना है कि जंगल ज़रूरी हैं लेकिन हमें लकड़ी की भी ज़रूरत है। तो लकड़ी उत्पादन के बेहतर तरीके खोजने होंगे और यह परियोजना हमें इसी काम में मदद करेगी।

दक्षिण-पश्चिमी ओरेगन में नव-निर्मित एलियट स्टेट रिसर्च फॉरेस्ट की लगभग 33,000 हैक्टर भूमि इस परियोजना के अधीन होगी। इसे 40 से अधिक भागों में बांटकर वैज्ञानिक कई वन-प्रबंधन रणनीतियों का परीक्षण करेंगे, जिनमें से कुछ में वनों की कटाई भी की जाएगी। इस परियोजना की सलाहकार समिति के सदस्यों में पर्यावरणविद, शिकारी, लकड़हारे और स्थानीय जनजातियों के लोग शामिल हैं।

दशकों से एलियट वन क्षेत्र विवादों में घिरा रहा है। यहां वनों की कटाई एक बड़ा व्यवसाय है। जंगल के एक हिस्से में महत्वपूर्ण और प्राचीन डगलस फर और अन्य वृक्ष हैं। जंगल के अन्य हिस्सों में 1930 के बाद से सक्रिय रूप से कटाई और इनकी जगह नए पौधे लगाने का काम हो रहा है। प्राचीन जंगलों में कई विलुप्तप्राय पक्षी रहते हैं। 2012 में, इनके संरक्षण के उद्देश्य से यहां वाणिज्यिक वन कटाई पर रोक लगा दी गई थी।

2018 में ओएसयू शोधकर्ताओं द्वारा यह परियोजना प्रस्तावित करने से पहले तक, ओरेगन राज्य ने वन संरक्षण के लिए कई बातें स्वीकार की थीं। लेकिन इस संपदा को शोध वन में बदलने का ओएसयू का प्रस्ताव छोटे स्तर पर वनों की कटाई फिर से शुरू कर देगा। योजना के मुताबिक एलियट वन में कटाई से होने वाली आमदनी प्रयोग का बुनियादी ढांचा बनाने और संचालन में मदद करेगी।

यूएस सहित दुनिया भर में दर्जनों शोध वन हैं। यहां वैज्ञानिक पारिस्थितिकी और मिट्टी से लेकर अम्लीय वर्षा और कार्बन डाईऑक्साइड के बढ़ते स्तर के प्रभावों का अध्ययन करते हैं। लेकिन एलियट शोध वन इनसे अलग और बड़ी परियोजना है। परियोजना के समर्थकों का कहना है कि यह वैज्ञानिकों को पहली बार इतने बड़े स्तर पर पारिस्थितिकी वानिकी का परीक्षण करने का अवसर प्रदान करेगी।

परियोजना के अनुसार इसके अधीन जंगल के उस 40 प्रतिशत से अधिक हिस्से में जंगल की कटाई नहीं होगी, जहां पुराने वृक्ष हैं। बाकी हिस्से को 40 छोटे हिस्सों में बांटकर विभिन्न तरह के भूमि प्रबंधन के अध्ययन किए जांएगे। इनमें से कुछ हिस्सों में चुनिंदा पेड़ों की कटाई होगी। बाकी वन के आधे हिस्से को काट कर पूरा साफ किया जाएगा, जबकि बाकी आधे वन क्षेत्र का संरक्षण किया जाएगा। प्रत्येक तरह के प्रबंधन का प्रभाव समझने के लिए वैज्ञानिक जंगल में कार्बन के स्तर, नदी-नालों के स्वास्थ्य, और कीटों, पक्षियों और मछलियों में विविधता का आकलन करेंगे।

मंज़ूरी मिलने के बावजूद परियोजना को कई बाधाओं का सामना करना पड़ सकता है। 1930 से ही ओरेगन पब्लिक स्कूल एलियट वन से कटाई के माध्यम से कानूनन राजस्व लेता है। परियोजना को इसकी क्षतिपूर्ति करनी होगी।

अन्य बाधाएं भी हैं। इस परियोजना में वे जंगलों को कैसे नियंत्रित करेंगे, और जोखिमग्रस्त और लुप्तप्राय प्रजातियों का किस तरह प्रबंधन करेंगे इसकी एक विस्तृत योजना पहले ही तैयार करनी होगी। और इसके लिए यूएस फिश एंड वाइल्डलाइफ सर्विस का अनुमोदन भी प्राप्त करना होगा।

ओएसयू के दल ने पिछले कुछ वर्षों में स्थानीय जनजातियों, उद्योगों, पर्यावरणविदों और परियोजना समिति के अन्य सदस्यों के साथ बैठकें और बातचीत करके सहमति बनाने की कोशिश की है। लेकिन इस पर बहस पूरी तरह खत्म नहीं हुई है। कई पर्यावरणविदों का अब भी सवाल है कि जलवायु संकट के दौर में कार्बन सोखने और संग्रहित करने वाले जंगलों का पूरी तरह सफाया करना कितना जायज़ है। सौ साल पहले की गलतियों को फिर एक बार नहीं दोहराया जाना चाहिए।

इसके अलावा काष्ठ उद्योग के साथ ओएसयू के सम्बंध भी संदेह के दायरे में हैं। जैसे 2019 में, ओएसयू के कॉलेज ऑफ फॉरेस्ट्री ने अपने एक जंगल के 6.5 हैक्टर क्षेत्र में फैले पेड़ों को काटने की अनुमति दे दी थी, जिसमें सैकड़ों साल पुराने वृक्ष लगे थे।

डीलुका मानते हैं कि अतीत में गलतियां हुई थीं लेकिन युनिवर्सिटी का अच्छा अकादमिक रिकॉर्ड है, वे एलियट वन में एक विश्व स्तरीय अनुसंधान सुविधा बनाना चाहते हैं। अगर हम काष्ठ संसाधनों की आपूर्ति के लिए वनों में कटाई करते हुए प्रजातियों को बचाए रखने के तरीके पता कर लेते हैं, तो यह बहुत प्रभावी होगा। बहरहाल, सब कुछ अंतिम प्रबंधन योजना पर निर्भर करेगा लेकिन तब तक तो सलाहकार समिति ने परियोजना को अस्थायी हरी झंडी दिखा दी है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.nature.com/articles/d41586-021-01256-9

प्रतिरक्षा व्यवस्था और शरीर की हिफाज़त – 5 – विनीता बाल, सत्यजीत रथ

सचमुच अनंत खज़ाना कैसे बनता है?

प्रतिरक्षा तंत्र उन तालों की चाभियां कैसे बनाता है, जिन्हें उसने पहले कभी न देखा हो? और यह कैसे सुनिश्चित करता है कि हर किरदार के पास एक अनोखी चाभी हो?

प्रतिरक्षा तंत्र की अंतहीन विविधता

हमने पिछली बार बात की थी प्रतिरक्षा तंत्र के लिए एक सचमुच खुले खज़ाने के निर्माण की। अब तक हमने जो बातें की हैं उनसे तो जीन्स के पुन:संयोजन के करतबों से मात्र एक काफी बड़े खज़ाने के निर्माण तक पहुंच पाए हैं। वास्तव में एक अनंत खज़ाना बनाने का एकमात्र तरीका तो यही होगा कि प्रतिरक्षा ग्राहियों की प्रत्येक शृंखला के परिवर्ती क्षेत्र बनाने वाले VDJ या VJ एक्सॉन में उत्परिवर्तन की मदद ली जाए। भेड़ जैसे कुछ प्राणि ऐसा करते भी हैं और मुर्गों जैसे कुछ जीव इस विधि का थोड़ा परिवर्तित रूप इस्तेमाल करते हैं।

अलबत्ता, माइस (एक किस्म का चूहा, जिसके प्रतिरक्षा तंत्र का सर्वाधिक अध्ययन किया गया है) और मनुष्य इसकी बजाय एक ज़्यादा आसान जुगाड़ का सहारा लेते हैं। सबसे पहले तो वे V, D और J मिनी-जीन्स को जोड़ने में एक बुनियादी पुनर्मिश्रण मशीनरी का उपयोग करते हैं। यह मशीनरी जोड़े जाने वाले दो जीन्स को पंक्तिबद्ध कर देती है। पंक्तिबद्ध करने में वह पहचान व सीध मिलाने के लिए अनुक्रम पहचान का उपयोग करती है। प्रत्येक मिनी-जीन के कोडिंग क्षेत्र के नज़दीक एक चिंह होता है जो दो संरक्षित अनुक्रमों से बना होता है – एक हैप्टोमर (7 क्षार) और एक नैनोमर (9 क्षार)। ये एक-दूसरे से 12 अथवा 23 क्षारों की दूरी पर होते हैं। सीध मिलाने की क्रियाविधि ऐसी है कि 7-12-9 संकेत चिंह सिर्फ 7-23-9 संकेत चिंह से जुड़ सकता है। चूंकि V और J दोनों भारी शृंखला मिनी-जीन्स पर एक ही किस्म के संकेत-चिंह होते हैं, इसलिए यह व्यवस्था सुनिश्चित कर देती है कि वे भारी शृंखला में D मिनी-जीन को छोड़कर गलती से भी एक-दूसरे से नहीं जुड़ेंगे।

विविधता उत्पन्न करने का अगला जुगाड़ इस तथ्य पर टिका है कि VDJ को जोड़ते समय पुनर्मिश्रण की घटना में डीएनए दोहरी कुंडली में से एक सूत्र को काटना अनिवार्य होता है। इसके चलते कोशिकीय रख-रखाव की इस मशीनरी को मौका मिल जाता है कि कटे हुए सूत्र का उपयोग करते हुए दूसरे सूत्र को भी तोड़ दे और फिर दोनों सिरों को जोड़कर एक हेयरपिन जैसा छल्ला बना दे। तो अब पुनर्मिश्रण की मशीनरी डीएनए के इन दो हेयरपिन छल्लों को पकड़ लेती है – प्रत्येक मिनी-जीन का एक छल्ला – और उन्हें पास-पास लाकर सिल देती है। सिलने के बाद वह इन्हें फिर से काटकर खोल देती है। इस काटने की वजह से वह छल्ला दूसरी बार जहां से खुलता है वह मूल स्थान से अलग होता है। तो अब डीएनए के दो सूत्र एक ही बिंदु पर समाप्त नहीं होते। वास्तव में एक दूसरे की अपेक्षा थोड़ा आगे तक लटका होता है। यह बाहर लटकता टुकड़ा डीएनए सफाई करने वाले एंज़ाइम्स (एक्सोन्यूक्लिएज़) के प्रति बहुत संवेदनशील होता है। ये एंज़ाइम तत्काल इनका मुंह पकड़कर इन्हें चबाना शुरू कर देते हैं। कई बार जोश में आकर वे बाहर लटकते हिस्से से भी अधिक चबा डालते हैं। ज़ाहिर है, यह प्रक्रिया जुड़ाव बिंदु पर डीएनए के अनुक्रम को इस तरह बदल देती है, जैसा जीनोम के द्वारा अपेक्षित नहीं था। दूसरे शब्दों में, अब जीनोम सांचे से इतर बेतरतीबी VDJ एक्सॉन में शामिल हो चुकी है।

एक अन्य रख-रखाव एंज़ाइम (टर्मिनल डीऑक्सीन्यूक्लियोटाइड ट्रांसफरेज़) डीएनए में से क्षारों को इस तरह हटा सकता है जो मूल योजना का हिस्सा नहीं था। यह एंज़ाइम अनुक्रम को और बदल देता है।

क्या बी-कोशिका और टी-कोशिका ग्राही विविधता में कुछ पैटर्न हैं?

हमने बात की थी कि बी-कोशिकाएं और टी-कोशिकाएं अपने लक्ष्यों को अलग-अलग ढंग से पहचानती हैं। बी-कोशिका के ग्राही सारे लक्ष्यों को पहचानते हैं और उनमें कोई स्थान-आधारित रुकावट नहीं होती। दूसरी ओर, टी-कोशिकाएं किसी लक्ष्य को तभी पहचानती हैं जब वह किसी कोशिका की सतह पर एमएचसी प्रोटीन से जुड़ा कोई पेप्टाइड हो। ज़ाहिर है, इन एमएचसी प्रोटीन्स में बहुत अधिक विविधता नहीं होगी। हमने कहा भी था कि मात्र उन टी-कोशिकाओं को चुना जाता है जो शरीर में उपलब्ध एमएचसी प्रोटीन से सम्बद्ध अज्ञात पेप्टाइड को पहचान पाए। इस प्रक्रिया को सकारात्मक चयन कहते हैं।

तो बी- एवं टी-कोशिकाओं के ग्राहियों के विभिन्न खंडों में विविधता का इससे क्या सम्बंध है?

स्पष्ट है कि बी-कोशिकाओं के ग्राहियों के सारे हिस्सों में काफी विविधता की ज़रूरत होगी क्योंकि ग्राही के सारे घटकों का संपर्क लक्ष्यों के निहायत विविध आकारों से होने की संभावना है। इसके विपरीत टी-कोशिका ग्राहियों के जो हिस्से एमएचसी अणु से संपर्क बनाएं उनमें उतनी विविधता की ज़रूरत नहीं है जितनी कि उस हिस्से में जो पेप्टाइड के संपर्क में आएगा।

तो टी-कोशिकाओं के ग्राहियों के निर्माण में VDJ मिनी-जीन हिस्सों का योगदान कितना है (जो सांचे के रूप में काम करते हैं) और जोड़ वाले हिस्सों का क्या योगदान है जो गैर-सांचा गत ढंग से काम करते हैं? रोचक बात है कि टी-कोशिका ग्राही के वे हिस्से जो पेप्टाइड के संपर्क में आते हैं, उनका कोडिंग गैर-सांचागत विविधता-जनक हिस्से में होता है। V, D और J जीन्स में विविधता स्वाभाविक रूप से V, D और J समूहों में उपलब्ध वैकल्पिक समूहों से आती है। यहां, टी-कोशिका ग्राहियों के लिए उपलब्ध संख्या कहीं कम होती है, बनिस्बत बी-कोशिका ग्राहियों के। इससे एक बार फिर यह बात रेखांकित होती है कि पेप्टाइड के संपर्क में आने वाले ग्राहियों की अपेक्षा एमएचसी प्रोटीन्स के संपर्क में आने वाले टी-कोशिका ग्राहियों में विविधता काफी कम होती है। दूसरी ओर, बी-कोशिका ग्राहियों के लिए मिनी-जीन्स के विकल्पों की संख्या बहुत अधिक होती है क्योंकि उन्हें बहुत अधिक कुल विविधता की ज़रूरत होती है। यानी पूरी व्यवस्था में न सिर्फ विविधता बढ़ाने का इंतज़ाम है बल्कि उन हिस्सों में विविधता और अधिक बढ़ाने का इंतज़ाम है जहां इसकी ज़्यादा ज़रूरत हो।

प्रत्येक कोशिका पर एक ही ग्राही होता है जबकि गुणसूत्र दो होते हैं

लक्ष्य-पहचान के क्लोनल विविधरूपी मॉडल के फायदों की बात करते हुए हमने कहा था कि बेहतर होगा यदि प्रत्येक कोशिका पर एक ही लक्ष्य का ग्राही हो ताकि अनजाने में लक्ष्य-पहचान में कोई घालमेल न हो। लेकिन यदि ग्राही शृंखला बनाने के लिए VDJ सम्मिश्रण होना है तो जब प्रत्येक कोशिका में गुणसूत्रों की दो प्रतिलिपियां होती हैं तो प्रत्येक कोशिका पर दो ग्राही शृंखलाएं क्यों नहीं बन जाती?

इसके दो समाधान हैं। एक तो यह कि पूरी प्रक्रिया बेतरतीबी से चलती है, इसलिए संयोगवश हो सकता कि दो में से एक शृंखला ऐसी बने जो निरर्थक हो। दरअसल, इसकी वजह से ही कई बी- और टी-कोशिकाएं नाकाम रहती हैं और मर जाती हैं। इसका मतलब है कि इन कोशिकाओं को बनाने की प्रक्रिया में काफी बरबादी निहित है।

एक ही कोशिका पर दो ग्राही नहीं बनने देने का एक तरीका यह है कि दोनों ग्राहियों को परस्पर होड़ करने दी जाए। जो शृंखला पहले बन जाए वह दूसरी शृंखला के निर्माण की प्रक्रिया को रोक दे।

अलबत्ता, ये दोनों ही प्रक्रियाएं पूर्ण रूप से कारगर नहीं हैं। ऐसी कई बी- व टी-कोशिकाएं होती हैं जिन पर दो-दो पहचान-ग्राही होते हैं। ये प्रतिरक्षा गफलत की वाहक होती हैं, खासकर यदि किसी कोशिका पर एक ग्राही ऐसा हो जो शरीर के अपने किसी अणु को पहचानता हो। लेकिन इस मसले को तब संभाल लिया जाता है जब उन कोशिकाओं को नष्ट किया जाता है जो शरीर के अपने अणु को प्रतिरक्षा-लक्ष्य के रूप में पहचानती हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://2rdnmg1qbg403gumla1v9i2h-wpengine.netdna-ssl.com/wp-content/uploads/sites/3/2016/11/immuneSystem-1190000241-770×553-1-650×428.jpg

भारत में फैल रहे कोरोनावायरस संस्करण

भारत में कोविड-19 की दूसरी भयावह लहर ने देश को गंभीर स्थिति में पहुंचा दिया है। वैज्ञानिक समुदाय यह समझने के प्रयास कर रहा है कि कोरोनावायरस के कौन-से संस्करण इसके लिए ज़िम्मेदार हैं।

ऐसा बताया जा रहा है कि संस्करण बी.1.617 अधिक संक्रामक और प्रतिरक्षा को चकमा देने में सक्षम है। जंतुओं पर किए गए अध्ययनों से पता चलता है कि यह संस्करण गंभीर रूप से बीमार करने में सक्षम हो सकता है। गौरतलब है कि बी.1.617 संस्करण पूरे भारत में प्रमुख संस्करण के रूप में उभरा है।

कुछ समय पूर्व भारत में कोविड-19 के मामलों में अचानक वृद्धि के पीछे कई संस्करणों के होने का कारण बताया जा रहा था। जीनोमिक डैटा के आधार पर यूके में पहचाना गया बी.1.1.7 संस्करण दिल्ली और पंजाब में देखा गया था जबकि पश्चिम बंगाल में नया संस्करण बी.1.618 और महाराष्ट्र में बी.1.617 संस्करण प्रमुख रूप से पाया गया है। बी.1.617 संस्करण सबसे प्रमुख संस्करण के रूप में उभरा है जिसके मामले दिल्ली में काफी तेज़ी से बढ़ रहे हैं। इस सम्बंध में नेशनल सेंटर फॉर डिसीज़ कंट्रोल के निदेशक सुरजीत सिंह कई राज्यों में उछाल के पीछे बी.1.617 संस्करण को प्रमुख मान रहे हैं।

विश्व स्वास्थ्य संगठन ने बी.1.617 को ‘चिंताजनक संस्करण’ की श्रेणी में रखा है। इसका मतलब है कि यह संस्करण पूर्व के ज्ञात संस्करणों की तुलना में तेज़ी से फैलता है, गंभीर रूप से बीमार करता है या फिर प्रतिरक्षा से बच निकलने में सक्षम है। हाल ही में यूके सरकार ने बी.1.617.2 उप-प्रकार को भी इसी श्रेणी में डाला है। कुछ अन्य ‘चिंताजनक संस्करण’ भी उभरे हैं। पी.1 संस्करण ब्राज़ील में दूसरी लहर का प्रमुख कारण बताया गया है जबकि यूके में बी.1.1.7 संस्करण के कारण कोविड मामलों में काफी वृद्धि देखी गई।

हालांकि, बी.1.617 पर डैटा अभी जारी हुआ है लेकिन ऐसा अनुमान है कि यह भारत में पहले से उपस्थित कई संस्करणों में से उभरा है। सबसे पहले इस संस्करण का पता अक्टूबर में चला था। इसके बाद से जनवरी के अंत में बढ़ते मामलों को देखते हुए इस संस्करण पर निगरानी बढ़ा दी गई और महाराष्ट्र में बी.1.617 एक प्रमुख संस्करण के रूप में पाया गया। तब से इसके कई उपवंश उभरने लगे। बी.1.617 में वैज्ञानिकों ने वायरस के स्पाइक प्रोटीन में आठ उत्परिवर्तन देखे हैं। इनमें से दो उत्परिवर्तन ऐसे थे जो इसे अधिक संक्रामक बनाते हैं और तीसरा उत्परिवर्तन वही है जिसने पी.1 को प्रतिरक्षा को चकमा देने में सक्षम बनाया है।

यह भी पता चला है कि बी.1.617 संस्करण पिछले संस्करणों की तुलना में आंतों और फेफड़ों की कोशिकाओं में प्रवेश करने में थोड़ा अधिक सक्षम है। हालांकि, इससे अभी तक यह स्पष्ट नहीं है कि यह मामूली-सा बदलाव कैसे संचरण में वृद्धि करता है। फिर भी जीवों पर किए गए अध्ययन में बी.1.617 संस्करण ने काफी गंभीर रूप से बीमार किया है।

इस विषय में युनिवर्सिटी ऑफ कैंब्रिज के वायरोलॉजिस्ट रविन्द्र गुप्ता के शोध से पता चला है कि टीकाकृत लोगों की एंटीबॉडीज़ अन्य संस्करणों की तुलना में बी.1.617 के विरुद्ध कम प्रभावी हैं। टीकाकृत लोगों के सीरम में आम तौर पर एंटीबॉडी उपस्थित होते हैं जो वायरस को बेअसर करते हुए कोशिकाओं को संक्रमित होने से बचाते हैं। इसके अलावा शोधकर्ताओं ने यह भी पाया कि दिल्ली में जिन स्वास्थ्य सेवा कर्मचारियों को कोवीशील्ड का टीका लगाया गया है और जो दोबारा से संक्रमित हुए हैं उनमें अधिकांश में बी.1.617 संस्करण पाया गया है। लेकिन उनके अनुसार यह टीके को किसी भी तरह से असरहीन नहीं बनाते हैं।    

इसी तरह जर्मनी की टीम ने पूर्व में सार्स-कोव-2 से ग्रसित 15 लोगों के सीरम का परीक्षण किया और पाया कि उनके एंटीबॉडीज़ पिछले संस्करणों की तुलना में बी.1.617 के विरुद्ध लगभग 50 प्रतिशत कम प्रभावी हैं। फाइज़र टीके की दो खुराक प्राप्त लोगों के सीरम का परीक्षण करने पर देखा गया कि एंटीबॉडीज़ बी.1.617 के विरुद्ध लगभग 67 प्रतिशत कम प्रभावी हैं। इसके साथ ही भारत बायोटेक द्वारा निर्मित कोवैक्सीन टीका और कोवीशील्ड पर एक अप्रकाशित अध्ययन टीके को प्रभावी बताते हैं। जबकि वैज्ञानिकों ने कोवैक्सीन द्वारा उत्पन्न एंटीबॉडीज़ की प्रभाविता में कुछ कमी पाई है।

फिर भी गुप्ता ने चेतावनी दी है कि प्रयोगशाला में किए गए ये सभी अध्ययन छोटे समूहों पर किए गए हैं जिनमें अन्य ‘चिंताजनक संस्करणों’ की तुलना में एंटीबॉडी प्रभावशीलता में मामूली कमी देखी गई है। इसके अलावा वैज्ञानिकों ने किसी संस्करण के टीके की प्रतिरक्षा से बच निकलने की क्षमता का पता लगाने के लिए सीरम परीक्षण को उचित नहीं बताया है। टीकों से बड़ी संख्या में एंटीबॉडी का उत्पादन होता है जिसके चलते टीके की क्षमता में मामूली गिरावट महत्वपूर्ण नहीं होती है। इसके अलावा, प्रतिरक्षा प्रणाली के अन्य भाग जैसे टी-कोशिकाओं पर भी कोई प्रभाव नहीं देखा गया है।

उदाहरण के तौर पर, बी.1.351 संस्करण को एंटीबॉडी को निष्क्रिय करने की क्षमता के रूप में देखा जाता है जबकि मनुष्यों पर किए गए अध्ययनों से पता चलता है कि कई टीके गंभीर बीमारी को रोकने में इस संस्करण के विरुद्ध काफी प्रभावी रहे हैं। इन्हीं कारणों से टीकों को बी.1.617 के विरुद्ध भी काफी प्रभावी माना जा रहा है जो गंभीर रूप से बीमार पड़ने से बचा सकते हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://cdn.the-scientist.com/assets/articleNo/68733/aImg/42077/variants-article-l.jpg

काली फफूंद का कहर: म्यूकरमायकोसिस – डॉ. भोलेश्वर दुबे, डॉ. किशोर पवार

रीब डेढ़ साल से पूरी दुनिया में वायरस जनित रोग कोविड-19 से त्राहि-त्राहि मची हुई है। कोविड-19 से जैसे-तैसे मरीज़ अपनी जान बचाकर राहत महसूस करे उसके पहले ही एक और विकट समस्या उसे घेर लेती है। यह नई समस्या पिछले कुछ महीनों से व्यापक असर दिखा रही है। यह एक अत्यंत साधारण और आम तौर पर हमारे आसपास पाई जाने वाली फफूंद (ब्रेड मोल्ड) की देन है। इन दिनों इससे होने वाले रोग म्यूकरमाइकोसिस के संदर्भ में यह ब्लैक फंगस के नाम से जानी जा रही है।

ब्लैक फंगस या काली फफूंद सामान्यत: बासी रोटियों, ब्रेड, सड़े-गले पदार्थों, चमड़े की चीज़ों, गोबर, मिट्टी और नमी वाले स्थानों पर पाई जाती है। कवक विज्ञान की दृष्टि से ये ज़ायगोमाइकोटिना समूह की सदस्य हैं जो मुख्य रूप से मृतोपजीवी हैं (यानी सड़ते-गलते पदार्थों से पोषण प्राप्त करती हैं)। अपवादस्वरूप ये दुर्बल परजीवी की तरह व्यवहार करती हैं। इनका शरीर महीन सफेद तंतुओं के जाल से बना होता है और पर्याप्त पोषण और अनुकूल पर्यावरण में ये असंख्य गहरे भूरे या काले बीजाणु का उत्पादन करती हैं। ये बीजाणु ही फफूंद के फैलाव और रोग के कारण बनते हैं।

दुर्बल माने जाने वाले ये परजीवी भी इन दिनों उग्र रूप धारण कर चुके हैं। इस रोग के कारण कई लोगों को अपनी आंखें गंवाना पड़ी हैं, लकवा हो गया और यहां तक कि कई लोगों की जान भी जा चुकी है।

यह फफूंद रक्त वाहिनी में घुसपैठ करती है और नाक, आंख, फेफड़ों, मस्तिष्क और गुर्दों सहित शरीर के प्रमुख अंगों को नुकसान पहुंचाती है। पूरे विश्व में म्यूकरमाइकोसिस पैदा करने वाली प्रमुख फफूंद राइज़ोपस ओराइज़ी है। इसके अलावा अलग-अलग भौगोलिक क्षेत्रों में इसी वर्ग के म्यूकर सहित 11 वंश और 27 प्रजातियां मनुष्य में संक्रमण का कारण बनती हैं।

हवा में उपस्थित बीजाणु जब सांस के माध्यम से मानव शरीर में पहुंचते हैं तो ये संक्रमण की शुरुआत कर सकते हैं।  म्यूकरमाइकोसिस का संक्रमण उन व्यक्तियों में जल्दी हो जाता है जिनको डायबिटीज़ अथवा रक्त सम्बंधी कोई गंभीर रोग हो, या जिनका अंग प्रत्यारोपण हुआ हो। कॉर्टिकोस्टेरॉइड (बीटामेथेसोन, प्रेड्निसोलोन, डेक्सामेथेसोन वगैरह) उपचार ले रहे व्यक्तियों में भी इस रोग की संभावना अधिक होती है। एशियाई देशों में डायबिटीज़ इस रोग का खतरा बढ़ाने वाला सबसे प्रमुख कारण है, वहीं रक्त रोग और अंग प्रत्यारोपण युरोपीय देशों और अमेरिका में इस रोग का खतरा बढ़ाते हैं।

वर्तमान परिदृश्य में वैश्विक स्तर पर म्यूकरमाइकोसिस के प्रकरणों में वृद्धि हो रही है मगर यह वृद्धि भारत और चीन में बहुत अधिक है क्योंकि यहां अनियंत्रित डायबिटीज़ के मरीज़ों की संख्या ज़्यादा है। अलग-अलग अध्ययनों में पाया गया है कि भारत में इस रोग से संक्रमित 57 प्रतिशत लोग अनियंत्रित डायबिटीज़ से ग्रस्त थे वहीं वैश्विक स्तर पर यह प्रतिशत 40 के आसपास है। भारत में अधिक संक्रमण के पीछे एक कारण यह भी है कि यहां की जनता नियमित स्वास्थ्य जांच नहीं करवा पाती है और डायबिटीज़ के प्रति भी लापरवाही बरती जाती है। यह म्यूकरमाइकोसिस संक्रमण को न्यौता देने जैसा है।

भारत में कई गहन चिकित्सा इकाइयों पर किए गए अध्ययन में पाया गया कि इनमें से 24 प्रतिशत में म्यूकरमाइकोसिस संक्रमण उपस्थित था। भारत में इस संक्रमण की दर बहुत अधिक है। यहां प्रति वर्ष नौ लाख लोग इससे संक्रमित होते हैं जबकि शेष विश्व में दस हज़ार लोग ही प्रति वर्ष संक्रमित होते हैं।

अध्ययन में यह भी पाया गया है कि इस संक्रमण में लौह तत्व की अधिकता और डीफेरोक्सामाइन उपचार की भी बड़ी भूमिका है। पहले डायबिटीज़ जन्य कीटोएसिडोसिस, डाएलिसिस और गुर्दे खराब होने की दशा में लौह तत्व की अधिकता को नियंत्रित करने के लिए डीफेरोक्सामाइन का काफी उपयोग किया जाता था। डीफेरोक्सामाइन के द्वारा अलग किया गया लौह तत्व राइज़ोपस द्वारा पकड़ लिया जाता है, जिससे इस फफूंद की अच्छी वृद्धि होने लगती है। ऐसे रोगियों की मृत्यु दर 80 प्रतिशत तक होती है।

उपचार से बचाव बेहतर कुछ सावधानियां हैं जो इस कवक के जानलेवा संक्रमण से बचा सकती हैं: अस्पताल के उपकरणों के अलावा ब्लैक फंगस सूक्ष्म बीजाणुओं द्वारा मुंह और नाक के रास्ते प्रवेश करती है। अत: बचाव का एक तरीका घर पर भी मास्क का उपयोग करना है। मास्क गीला ना हो और कपड़े का हो तो बेहतर। विशेषकर डायबिटीज़ मरीज़ों के लिए मास्क बहुत उपयोगी हो सकता है। घर पर या ऑफिस में जब सफाई की जाती है तब ट्रिपल लेयर मास्क लगा ही लेना चाहिए क्योंकि इस दौरान उड़ने वाली धूल के कणों में विभिन्न प्रकार की फफूंद के बीजाणु पाए जाने की संभावना ज़्यादा होती है। कवक के संक्रमण का एक और रुाोत कूलर के पैड भी हैं क्योंकि वहां लगातार नमी फफूंद की वृद्धि के लिए अनुकूल पर्यावरण उपलब्ध कराती है।

म्यूकरमाइकोसिस के मामले संदूषित उपचार उपकरणों और चिपकने वाली (एडहेसिव) पट्टियों के कारण भी बढ़ते हैं। अमेरिका के अस्पतालों में उपयोग किए जाने वाले कपड़े और बिस्तर संदूषित पाए गए और उनमें राइज़ोपस की प्रजातियां मिलीं।

कुछ मामलों में म्यूकरमाइकोसिस से होने वाली मौत का आंकड़ा बहुत अधिक है: शारीरिक रूप से कमज़ोर, गंभीर बीमारी से अभी-अभी ठीक हुए, सर्जरी करवा चुके, कैंसर, एड्स से पीड़ित और रोग प्रतिरोधक क्षमता की दिक्कतों से जूझ रहे रोगी।

आज के हालात में म्यूकरमाइकोसिस के भारत में लगातार बढ़ते मामलों के पीछे रोगियों की कमजोर पड़ चुकी प्रतिरोधक क्षमता और गंभीर रोग से ग्रस्त होना तो एक कारण है ही किंतु विगत कुछ माह से कोविड-19 के प्रकरणों में अप्रत्याशित वृद्धि के कारण पूरे चिकित्सा तंत्र में जो अफरा-तफरी मच गई, उसके चलते अस्पतालों द्वारा स्वच्छता की अनदेखी संक्रमण को विस्फोटक स्थिति में पहुंचाने का एक प्रमुख कारण माना जा सकता है। ऑक्सीजन प्रदाय उपकरणों, बिस्तरों आदि की समुचित सफाई ना होना भी इस संक्रमण को बढ़ाने में सहायक रहा।

एक कारण यह भी बताया जा रहा है कि आनन-फानन औद्योगिक ऑक्सीजन का उपयोग अस्पतालों में किए जाने की वजह से भी फफूंद संक्रमण में वृद्धि हुई है। आक्सीजन की भारी डिमांड देखते हुए उद्योगों में प्रयोग होने वाले ऑक्सीजन, नाइट्रोजन, आर्गन व नाइट्रोजन गैसों के सिलेंडरों में गैस भरकर अस्पतालों में पहुंचाना पड़ा। लेकिन इन्हें अस्पतालों में भेजने से पहले पूरी तरह कीटाणु रहित नहीं किया जा सका। डाक्टरों का कहना है कि ऑक्सीजन आपूर्ति की पाइपलाइन व ह्यूमिडीफायर में फंगस जमा होने व कंटेनर में साधारण पानी का उपयोग करने से भी बीमारी बढ़ी। वैसे अखिल भारतीय आयुर्विज्ञान संस्थान ने स्पष्ट किया है कि ऑक्सीजन उपचार और फफूंद संक्रमण के बीच निश्चित सम्बंध नहीं देखा गया है। संस्थान का मत है कि इसके पीछे डायबिटीज़ और स्टेरॉइड चिकित्सा की भूमिका हो सकती है।

फफूंद जन्य रोग हवा में इनके बीजाणुओं की उपस्थिति या संदूषित चिकित्सा सामग्री के माध्यम से फैलते हैं। अत: अब प्राथमिकता के आधार पर सभी अस्पतालों और वहां की सामग्री की स्वच्छता सुनिश्चित की जानी चाहिए ताकि बिना महंगे इलाज के लोगों को इस संक्रमण से बचाया जा सके। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://ichef.bbci.co.uk/news/976/cpsprodpb/2D3E/production/_118428511_gettyimages-1215124320-170667a.jpg

स्तनधारी अपनी आंतों से सांस ले सकते हैं

म तौर पर हमारी आंत भोजन से पोषण लेने का काम करती है और गुदा मल को बाहर निकालने का। लेकिन कृंतकों और सूअरों पर हुए ताज़ा अध्ययन में देखा गया है कि स्तनधारियों की आंत ऑक्सीजन का भी अवशोषण कर सकती है, जो श्वसन संकट की स्थिति से उबरने में मदद कर सकता है। कहा जा रहा है कि भविष्य में इस तरीके से मनुष्यों को ऑक्सीजन की कमी से बचाया जा सकेगा, खासकर उन जगहों पर जहां ऑक्सीजन देने की अन्य सुविधाएं उपलब्ध नहीं हैं।

अधिकांश स्तनधारी जीव अपने मुंह और नाक से सांस लेते हैं, और फेफड़े के ज़रिए पूरे शरीर में ऑक्सीजन भेजते हैं। यह तो ज्ञात था कि समुद्री कुकंबर और कैटफिश जैसे जलीय जीव आंत से सांस लेते हैं। स्तनधारी जीव आंतों से दवाइयों का अवशोषण तो कर लेते हैं लेकिन यह मालूम नहीं था कि क्या वे श्वसन भी कर सकते हैं।

यही पता लगाने के लिए सिनसिनाटी चिल्ड्रन हॉस्पिटल के गैस्ट्रोएंटरोलॉजिस्ट ताकानोरी ताकबे और उनके साथियों ने चूहों और सूअरों पर कई परीक्षण किए। पहले 11 चूहे लिए। इनमें से चार चूहों की आंतों के अस्तर को रगड़ कर पतला किया ताकि ऑक्सीजन अच्छी तरह अवशोषित हो सके, और फिर इन चूहों के मलाशय से शुद्ध, दाबयुक्त ऑक्सीजन प्रवेश कराई। शेष 7 चूहों की आंत के अस्तर को पतला नहीं किया गया था। उनमें से 4 की आंत में ऑक्सीजन प्रवेश कराई। और शेष तीन चूहों की न तो आंतों की सफाई की और न उन्हें ऑक्सीजन दी। इसके बाद सभी चूहों के शरीर में ऑक्सीजन की कमी पैदा कर दी (वे ‘हाइपॉक्सिक’ हो गए)।

मेड पत्रिका में प्रकाशित नतीजों के अनुसार जिन चूहों की आंत की सफाई नहीं की गई थी और ऑक्सीजन भी नहीं दी गई थी वे औसतन 11 मिनट जीए। जिन्हें आंत साफ किए बिना गुदा के माध्यम से ऑक्सीजन दी गई थी वे 18 मिनट तक जीए। और जिन्हें आंत साफ कर ऑक्सीजन दी गई थी वे चूहे लगभग एक घंटा जीवित रहे।

लेकिन शोधकर्ता आंत साफ करने की मुश्किल और जोखिमपूर्ण प्रक्रिया हटाना चाहते थे। इसलिए अगले अध्ययन में उन्होंने दाबयुक्त ऑक्सीजन की जगह परफ्लोरोकार्बन का उपयोग किया, जो ऑक्सीजन अधिक मात्रा में संग्रह करता है और अक्सर सर्जरी के दौरान रक्त के विकल्प के रूप में इसका उपयोग किया जाता है। उन्होंने तीन हाइपॉक्सिक चूहों और सात हाइपॉक्सिक सूअरों की आंत में ऑक्सीजन युक्त परफ्लोरोकार्बन प्रवेश कराया। नियंत्रण समूह के दो हाइपॉक्सिक चूहों और पांच हाइपॉक्सिक सूअरों की आंत में सलाइन प्रवेश कराई।

नियंत्रण समूह के चूहों और सूअरों में ऑक्सीजन का स्तर घट गया। लेकिन जिन चूहों में ऑक्सीजन प्रवेश कराई गई थी उनमें ऑक्सीजन का स्तर सामान्य रहा व सूअरों में ऑक्सीजन में लगभग 15 प्रतिशत की वृद्धि देखी गई जिससे वे हाइपॉक्सिया के लक्षणों से उबर पाए। कुछ ही देर में उनकी त्वचा की रंगत और गर्माहट भी लौट आई थी।

दोनों अध्ययन के आधार पर शोधकर्ताओं का कहना है कि स्तनधारी अपनी आंतों के माध्यम से ऑक्सीजन को अवशोषित कर सकते हैं, और ऑक्सीजन देने का यह नया तरीका सुरक्षित है। हालांकि मनुष्यों में इसके प्रभावों और सुरक्षा को देखा जाना अभी बाकी है लेकिन उम्मीद है कि यह तरीका ऑक्सीजन की कमी से जूझ रहे लोगों को बचाने में कारगर साबित हो सकता है। अन्य विशेषज्ञों का कहना है कि पारंपरिक श्वसन उपचारों से इसकी तुलना करके देखना चाहिए। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/article_main_image_-1280w__no_aspect/public/villi_1280p.jpg?itok=KIpIDocT

टीके की दूसरी खुराक में देरी और प्रतिरक्षा प्रक्रिया

पिछले वर्ष के अंत में, टीकों की सीमित आपूर्ति के चलते, यूके ने एक साहसिक प्रयोग शुरू किया था। इस प्रयोग में टीके की दूसरी खुराक में देरी करने का उद्देश्य वास्तव में अधिक से अधिक लोगों को टीका लगाना था ताकि उनको कुछ हद अस्पताल में भर्ती होने या फिर जान के जोखिम से बचाया जा सके।

लेकिन हाल ही में एक अध्ययन से पता चला है कि mRNA आधारित फाइज़र-बायोएनटेक टीके की दूसरी खुराक में देरी की जाए तो 80 से अधिक उम्र के लोगों में दूसरी खुराक मिलने पर एंटीबॉडी प्रतिक्रिया में तीन गुना तक बढ़ावा होता है। यह पहला ऐसा प्रत्यक्ष अध्ययन है जो टीके की दूसरी खुराक में देरी से एंटीबॉडी स्तर पर होने वाले प्रभाव का आकलन करता है। इसके निष्कर्षों का असर अन्य देशों के टीकाकरण कार्यक्रमों पर पड़ सकता है। पब्लिक हेल्थ इंग्लैंड की महामारी विज्ञानी और इस अध्ययन की सह-लेखक गायत्री अमृतालिंगम के अनुसार यह निष्कर्ष टीके की दूसरी खुराक में देरी से मिलने वाले बेहतर नतीजों की पुष्टि करता है।

कई कोविड-19 टीकों की दो खुराकें दी जाती हैं जिनमें से पहली खुराक प्रतिरक्षा प्रतिक्रिया आरंभ करती है तो दूसरी ‘बूस्टर’ का काम करती है। यूके में उपयोग किए जाने वाले तीनों टीकों के क्लीनिकल परीक्षणों में आम तौर पर तीन से चार सप्ताह का अंतर रखा गया था। लेकिन देखा गया कि कुछ टीकों में पहली और दूसरी खुराक के बीच लंबे अंतराल से अधिक मज़बूत प्रतिरक्षा प्रतिक्रिया उत्पन्न होती है।

इन निष्कर्षों की पुष्टि करने के लिए अमृतालिंगम और उनके सहयोगियों ने 80 से अधिक उम्र वाले 175 टीका प्राप्तकर्ताओं का अध्ययन किया जिनको फाइज़र टीके की दूसरी खुराक पहली खुराक के या तो तीन सप्ताह बाद या फिर 11-12 सप्ताह बाद दी गई थी। टीम ने सार्स-कोव-2 स्पाइक प्रोटीन के विरुद्ध एंटीबॉडीज़ के स्तर का मापन किया और टी-कोशिकाओं का भी आकलन किया। टी-कोशिकाएं लंबे समय तक एंटीबॉडी के स्तर को बनाए रखने में मदद कर सकती हैं।

उन्होंने पाया कि जिन लोगों को बूस्टर शॉट 12 सप्ताह बाद दिया गया है उनमें अधिकतम एंटीबॉडी का स्तर दूसरे समूह (जिसे दूसरी खुराक 3 सप्ताह बाद मिली थी) की तुलना में 3.5 गुना अधिक था। हालांकि अधिक अंतराल वाले लोगों में टी-कोशिकाएं कम पाई गई लेकिन इसके कारण बूस्टर शॉट के नौ सप्ताह बाद भी एंटीबॉडी के स्तर में अधिक तेज़ी से गिरावट नहीं आई थी।     

यह परिणाम काफी तसल्लीदायक हैं लेकिन सिर्फ फाइज़र टीके पर लागू होता है जो गरीब देशों में उपलब्ध नहीं है। इस संदर्भ में देशों को इस बात का ध्यान रखना होगा कि उनके यहां प्रचलित संस्करण कहीं मात्र एक खुराक के बाद संक्रमण के जोखिम को बढ़ाते तो नहीं हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://static.dw.com/image/56066863_303.jpg

प्रतिरक्षा व्यवस्था और शरीर की हिफाज़त – 4 – विनीता बाल, सत्यजीत रथ

प्रतिरक्षा तंत्र हर चीज़ को कैसे पहचान लेता है?

प्रतिरक्षा तंत्र यह कैसे सुनिश्चित करता है कि उसके पास दुनिया के हर ताले की चाभी हो?

हम पहले बता चुके हैं कि लक्ष्य की पहचान का क्लोनल विविधरूपी मॉडल या अनुकूली प्रतिरक्षा तंत्र रीढ़धारी प्राणियों में हिफाज़त का प्रमुख आधार है। लेकिन इस तरह की डिज़ाइन में कुछ बड़ी-बड़ी समस्याएं आती हैं। पहली समस्या तो यह है कि विकसित होते प्रतिरक्षा तंत्र को पता नहीं होता कि इस विशाल बुरी दुनिया में उसका सामना किस-किस चीज़ से होने वाला है। पता नहीं, उसकी मुठभेड़ शायद किसी मंगलवासी कीटाणु से हो जाए। चूंकि इस तंत्र को हर संभव लक्ष्य के लिए तैयार रहना है, इसलिए विकास का पूर्व अनुभव यहां काम नहीं आएगा क्योंकि वैकासिक अनुभव तो सिर्फ यह बताता है कि तंत्र अतीत में किन चीज़ों से टकरा चुका है। लेकिन इससे इस बात की कोई गारंटी नहीं मिलती कि भविष्य में कोई नई चीज़ सामने नहीं आ सकती। लिहाज़ा, संभावित लक्ष्यों के मामले में विविधता की कोई सीमा नहीं है।

ऐसा भी कोई तरीका नहीं है जिससे प्रतिरक्षा तंत्र (या जीव) नए दुश्मनों से संपर्क को सीमित कर सके। आखिर बाहरी पर्यावरण तो कमोबेश जीव के नियंत्रण से परे है। हां, मनुष्य काफी हद तक अपने पर्यावरण पर नियंत्रण करता है।

बहरहाल, यदि संभावित लक्ष्यों की तादाद अनगिनत है, तो स्वाभाविक है कि इन लक्ष्यों (एंटीजन्स) को पहचानने की संरचनाएं (ग्राही) भी अनगिनत होना चाहिए। लेकिन किसी भी जीव के जीनोम में असंख्य ‘रेडीमेड’ जीन्स तो नहीं हो सकते। तो सवाल है कि यह विविधतापूर्ण फौज या पहचान का खजाना कैसे पैदा होता है। ग्राहियों की ऐसी अनंत संख्या तैयार करने का एकमात्र तरीका है कि एक बुनियादी ग्राही आकृति के जीन को लिया जाए, और उसमें बेतरतीबी से काट-छांट, फेरबदल करके विभिन्न आकृतियों के जीन्स बनाए जाएं। और यह काम हर जीव में हर बार नए सिरे से किया जाए। यह प्रक्रिया प्रतिरक्षा तंत्र की एक और विशेषता की व्याख्या करती है, जिसकी चर्चा हमने शुरू में की थी – कि प्रतिरक्षा तंत्र की कोशिकाएं विकास के दौरान अपने डीएनए को पुन:संयोजित करती रहती हैं।

ग्राही निर्माण: जीनोम की काट-छांट

ग्राही के पूरे जीन की इस तरह की काट-छांट का परिणाम यह होगा कि ग्राही के उस हिस्से में तो परिवर्तन नहीं होगा जो लक्ष्य अणु (एंटीजन) से जुड़ता है बल्कि अन्य हिस्सों में होगा – जैसे किसी ऐसे हिस्से में जो ग्राही को कोशिका की झिल्ली पर जमने में मदद करता है। लिहाज़ा, बेहतर होगा कि काट-छांट की प्रक्रिया को ग्राही अणु के कुछ हिस्सों तक सीमित रखा जाए। 

इसके अलावा, इस काट-छांट के अंतर्गत डीएनए के सम्बंधित अनुक्रम में बेतरतीबी से जोड़ना, हटाना या फेरबदल करना शामिल होगा। डीएनए में ऐसा बेतरतीब परिवर्तन किसी कोशिका के लिए काफी जोखिम भरा काम हो सकता है। तो बेहतर होगा कि कोशिका ऐसे परिवर्तनों का कम से कम उपयोग करे। इसलिए यह बेहतर और सुरक्षित होगा कि ग्राहियों का विशाल भंडार तैयार करने के लिए उत्परिवर्तनों का सहारा कम से कम लिया जाए।

इस सबके लिए सबसे पहले तो हमें ग्राही को उसकी बुनियादी कामकाजी इकाइयों में तोड़ना होगा ताकि पुन:संयोजन की मशीनरी को पूरे ग्राही की बजाय ग्राही के बहुत छोटे हिस्से के साथ छेड़छाड़ करनी पड़े। हमें ज़रूरत इस बात की है कि प्रत्येक बी-कोशिका और प्रत्येक टी-कोशिका पर ऐसे ग्राही हों जो किसी अलग एंटीजन को पहचानते हों। लेकिन एक बार अपने अनोखे लक्ष्य को पहचानने के बाद ग्राही को अपनी कोशिका (बी या टी) को इस बात का संदेश प्रेषित करना चाहिए। यह संदेश हरेक ग्राही के मामले में एक जैसा होगा जो कोशिका को अपने काम के लिए तैयार कर दे। कुल मिलाकर, चाहे प्रत्येक ग्राही का लक्ष्य अनोखा होगा लेकिन कोशिका से जुड़ने और संदेश प्रेषण का काम सारी बी-कोशिकाओं के मामले में एक जैसा और सारी टी कोशिकाओं के संदर्भ में एक जैसा होगा। तो सारी बी-कोशिकाओं के ग्राहियों की रचना एक जैसी और सारी टी-कोशिकाओं के ग्राहियों की रचना एक जैसी होगी।

संदेश प्रेषण ग्राहियों का वह बुनियादी तत्व है जो कई ग्राहियों में एक जैसा होगा। अर्थात यह ‘स्थिर’ क्षेत्र है जबकि लक्ष्य को पहचानने वाला तत्व ‘परिवर्ती’ क्षेत्र है। तो अब हमारे पास जीन के दो हिस्से हो सकते हैं – ग्राही जीन का एक्सॉन जो स्थिर क्षेत्र का कोड होगा जिसे विविधता उत्पन्न करने की प्रक्रिया में अछूता छोड़ दिया जाएगा। जीन का दूसरा भाग परिवर्ती क्षेत्र का कोड होगा।

उत्परिवर्तन के बगैर विविधता

अब सवाल यह उठता है कि क्या जीन अनुक्रम में स्थायी परिवर्तनों का सहारा लिए बगैर विविधता उत्पन्न की जा सकती है। यानी क्या जीन में उत्परिवर्तन न करके मात्र पुन:संयोजन करके यह काम संभव है?

एक तरीका यह है कि परिवर्ती क्षेत्र के लिए कुछ निर्माण इकाइयों को लिया जाए और उन्हें अलग-अलग क्रम में जोड़ दिया जाए। ऐसे पुन:संयोजन से अधिकतम विविधता प्राप्त करने के लिए अच्छा होगा कि परिवर्ती क्षेत्र में कई घटक हों।

सबसे पहले तो यह देखिए कि बी-कोशिका किसी भी लक्ष्य की आकृति को पहचानेगी जबकि टी-कोशिका लक्ष्य को तभी पहचानेगी जब वह एमएचसी अणु से जुड़ा कोई पेप्टाइड हो। इसके अलावा इन दो कोशिकाओं में एक अंतर यह है कि ये ग्राही द्वारा मिलने वाले अलग-अलग किस्म के संदेश पर प्रतिक्रिया देती हैं।

लिहाज़ा, इन दो के संदर्भ में स्थिर क्षेत्र अलग-अलग किस्म के होने चाहिए। अर्थात बेहतर होगा कि बी-कोशिका और टी-कोशिका के ग्राहियों के निर्माण हेतु अलग-अलग जीन्स हों।

दूसरा, यह भी फायदेमंद होगा कि ग्राही दो प्रोटीन शृंखलाओं से बना हो – शृंखला-1A और शृंखला-2B एक किस्म के ग्राही बनाएंगी जबकि शृंखला-1A और शृंखला-2B मिलकर अलग गुणों वाला ग्राही बनाएंगी। कई जैविक तंत्रों में दोहरी शृंखला ग्राहियों का उपयोग किया जाता है। तो यह कोई बड़ी दिक्कत नहीं है। लिहाज़ा बी और टी दोनों कोशिकाओं के ग्राहियों में 2-2 शृंखलाएं होती हैं – छोटी वाली शृंखला को अल्फा (या हल्की) शृंखला तथा बड़ी शृंखला को बीटा (या भारी) शृंखला कहते हैं।

तीसरा, प्रत्येक शृंखला के लिए परिवर्ती क्षेत्र के छोटे से भंडार (जिसमें से प्रत्येक बी व टी कोशिका के ग्राही को बनाने के लिए लॉटरी निकाली जाएगी) का उपयोग करने की बजाय बेहतर यह होगा कि परिवर्ती क्षेत्र को छोटे-छोटे खंडों में विभक्त कर दिया जाए। अब ऐसे प्रत्येक छोटे खंड के लिए बेतरतीबी से लॉटरी निकाली जाए। वास्तव में बड़ी वाली शृंखला के लिए जीन्स के ऐसे तीन मिनी जीन संग्रह होते हैं – वी समूह, डी समूह और जे समूह। छोटी वाली शृंखला के लिए ऐसे दो समूह होते हैं – वी समूह और जे समूह।

अर्थात इनमें से प्रत्येक मिनी-जीन एक-एक र्इंट जोड़ता है जिसके परिणामस्वरूप ग्राही के परिवर्ती क्षेत्र की एक प्रोटीन शृंखला की विविधतापूर्ण रचना बन जाती है। प्रत्येक मिन-जीन समूह में कई वैकल्पिक र्इंटें उपलब्ध होती हैं और प्रत्येक कोशिका में प्रत्येक समूह में से इन्हें बेतरतीबी से चुना जाता है। यह दूसरे समूह के अपने समकक्ष प्रोटीन से जुड़कर पूरा परिवर्ती क्षेत्र बना देता है। इनमें से प्रत्येक र्इंट के अंतिम छोर पर एक निशान होता है। इसके चलते इनके आपस में जुड़ने का क्रम कुछ हद निश्चित होता है – जैसे भारी शृंखला के वी समूह का प्रोटीन भारी शृंखला के जे समूह के घटक से सीधे नहीं जुड़ सकता, बीच में डी समूह का घटक होना ज़रूरी होता है। पुनर्मिश्रण की यह प्रक्रिया काफी क्रमबद्ध ढंग से विविधतापूर्ण खजाना पैदा कर देती है।

लेकिन अभी भी यह खजाना अनंत तो कदापि नहीं है क्योंकि सारी सूचना तो जीनोम से ही आ रही है और जीनोम तो सीमित ही है ना! तो सवाल है खजाना निर्माण की इस प्रक्रिया में वास्तविक खुलापन कैसे हासिल किया जाता है। और खजाने में सचमुच की बेतरतीबी के जिन्न को सक्रिय करने की समस्याएं क्या हैं? अगली बार हम इसी सवाल पर विचार करेंगे। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://2rdnmg1qbg403gumla1v9i2h-wpengine.netdna-ssl.com/wp-content/uploads/sites/3/2016/11/immuneSystem-1190000241-770×553-1-650×428.jpg

विज्ञान की उपेक्षा की मानवीय कीमत

कुछ सप्ताह पूर्व ब्राज़ील में कोविड से होने वाली मौतों ने 4 लाख का आंकड़ा पार कर लिया। कुछ ऐसी ही स्थिति भारत में भी देखी जा सकती है जहां प्रतिदिन लगभग 3500 लोगों की मृत्यु हो रही है। इसके चलते विश्व भर से ऑक्सीजन, वेंटीलेटर, बेड और अन्य आवश्यक वस्तुओं के माध्यम से सहायता के प्रयास किए जा रहे हैं। हालांकि, ये दो देश हज़ारों किमी दूर हैं लेकिन दोनों के संकट राजनैतिक विफलताओं के परिणाम हैं। दोनों ही देशों के नेताओं ने या तो शोधकर्ताओं की सलाह की उपेक्षा की या कार्रवाई में कोताही की। परिणाम: मानव जीवन की अक्षम्य क्षति।

ब्राज़ील के राष्ट्रपति जेयर बोल्सोनारो कोविड-19 को साधारण फ्लू कहते रहे और मास्क के उपयोग और शारीरिक दूरी जैसी वैज्ञानिक सलाह को भी शामिल करने से इन्कार करते रहे। यही स्थिति ट्रंप प्रशासन के दौरान यूएस में बनी थी जहां 5,70,000 जानें गर्इं।

नेचर में प्रकाशित एक लेख के अनुसार सितंबर में कोविड-19 के प्रतिदिन 96,000 मामले और उसके बाद गिरकर मार्च 2021 में लगभग 12,000 मामले प्रतिदिन रह जाने के बाद भारत के नेता मुगालते में आ गए। कारोबार पहले की तरह खोल दिए गए, बड़ी संख्या में सभाओं के आयोजन होने लगे, विवादास्पद कृषि कानून के विरोध में हज़ारों किसान दिल्ली की सीमाओं पर एकत्रित हो गए और मार्च-अप्रैल में चुनावी रैलियां और धार्मिक आयोजन भी होते रहे।  

एक समस्या और भी रही – भारत में वैज्ञानिकों के लिए शोध के आंकड़ों तक पहुंच आसान नहीं रही। ऐसे में उनको सटीक अनुमान और साक्ष्य-आधारित सुझाव देने में काफी परेशानी होती है। फिर भी इस तरह के डैटा के अभाव में शोधकर्ताओं ने पिछले वर्ष सितंबर में सरकार को कोविड-19 प्रतिबंध में ढील देने के प्रति सतर्क रहने की चेतावनी दी थी। उन्होंने अप्रैल माह के अंत तक प्रतिदिन लगभग एक लाख मामलों की चेतावनी भी दी थी।  

इस संदर्भ में, 29 अप्रैल को 700 से अधिक वैज्ञानिकों ने प्रधानमंत्री को एक पत्र लिखा था जिसमें अस्पतालों में कोविड-19 परीक्षण के परिणामों और रोगियों के स्वास्थ्य सम्बंधी नतीजों जैसे डैटा तक बेहतर पहुंच की मांग की गई थी। इसके अलावा, नए संस्करणों की पहचान करने के लिए बड़े स्तर पर जीनोम-निगरानी कार्यक्रम शुरू करने का भी आग्रह किया था। इसके अगले दिन सरकार के प्रमुख वैज्ञानिक सलाहकार कृष्णस्वामी विजयराघवन ने इन चिंताओं को स्वीकार करते हुए यह स्पष्ट किया कि सरकार के बाहर के शोधकर्ताओं को आंकड़ों तक पहुंच कैसे मिल सकती है। इस कदम का सभी ने स्वागत किया, लेकिन डैटा प्राप्त करने के कुछ पहलू अभी भी अस्पष्ट हैं। गौरतलब है कि पूर्व में भी सरकार ने नीतियों के आलोचक शोधकर्ताओं की ओर कोई ध्यान नहीं दिया था। दो वर्ष पूर्व, 100 से अधिक अर्थशास्त्रियों और सांख्यिकीविदों ने एक पत्र में आधिकारिक आंकड़ों में राजनीतिक हस्तक्षेप समाप्त करने का आग्रह किया था जिस पर अधिकारियों ने अच्छी प्रतिक्रिया नहीं दी थी।

सामान्य स्थिति में भी अनुसंधान समुदाय और सरकार के बीच इस तरह के कठिन सम्बंध उचित नहीं होते। महामारी के दौरान तो फैसले त्वरित और साक्ष्य आधारित होने चाहिए। तब इस तरह की स्थिति काफी घातक हो सकती है। विज्ञान और वैज्ञानिकों की उपेक्षा से भारत और ब्राज़ील सरकारों ने जीवन की हानि को कम करने का एक महत्वपूर्ण अवसर खो दिया है। अपर्याप्त जानकारी के कारण त्वरित निर्णय लेने में परेशानी होती है। अत: शोधकर्ताओं और चिकित्सकों दोनों को स्वास्थ्य डैटा सुलभता से प्राप्त होना आवश्यक है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://hindi.cdn.zeenews.com/hindi/sites/default/files/2021/05/05/818567-oic-reuters.jpg