भारत की खोज में जंतुओं ने समंदर लांघा था – डॉ. डी. बालसुब्रमण्यन

हॉलीवुड की एनिमेशन फिल्मों में नाचते, गाते, शरारत करते लीमर ज़रूर दिखेंगे। ये सिर्फ मैडागास्कर द्वीप पर ही पाए जाते हैं जो प्रकृतिविदों के लिए हमेशा से दिलचस्प जंतुओं का आवास स्थल रहा है।

मैडागास्कर में पाए जाने वाले कई जंतुओं का सम्बंध दूरस्थ भारत (दूरी 3800 कि.मी.) में पाए जाने वाले वंशों से दिखता है, बनिस्बत अफ्रीका के जंतुओं से जबकि अफ्रीका यहां से महज 413 कि.मी. दूर है। यह प्रकृतिविदों के लिए एक ‘अबूझ पहेली’ रही है।

प्राणि वैज्ञानिक फिलिप स्क्लेटर हैरान थे कि लीमर और सम्बंधित जंतु व उनके जीवाश्म मैडागास्कर और भारत में तो पाए जाते हैं लेकिन मैडागास्कर के निकट स्थित अफ्रीका या मध्य पूर्व में अनुपस्थित हैं। 1860 के दशक में उन्होंने प्रस्तावित किया था कि किसी समय भारत और मैडागास्कर के बीच एक बड़ा द्वीप या महाद्वीप मौजूद रहा होगा, जो दोनों स्थानों के बीच सेतु का कार्य करता था। समय के साथ यह द्वीप डूब गया। इस प्रस्तावित जलमग्न द्वीप को उन्होंने लेमुरिया नाम दिया था।

स्क्लेटर की इस परिकल्पना ने हेलेना ब्लावात्स्की जैसे तांत्रिकों को आकर्षित किया, जिनका यह मानना था कि यही वह स्थान होना चाहिए जहां मनुष्यों की उत्पत्ति हुई थी।

देवनेया पवनर जैसे तमिल धार्मिक पुनरुत्थानवादियों ने भी इस विचार को अपनाया और इसे एक तमिल सभ्यता की संज्ञा दी। साहित्य और पांडियन दंतकथाओं में यह समुद्र में जलगग्न सभ्यता के रूप में वर्णित है। वे इस जलमग्न महाद्वीप को कुमारी कंदम कहते थे।

महाद्वीपों का खिसकना

स्क्लेटर के विचारों ने तब समर्थन खो दिया जब एक अन्य ‘हैरतअंगेज़’ सिद्धांत – महाद्वीपीय खिसकाव या विस्थापन – ने स्वीकृति प्राप्त करना शुरू किया। प्लेट टेक्टोनिक्स नामक इस सिद्धांत के अनुसार बड़ी-बड़ी प्लेट्स – जिन पर हम खड़े हुए हैं (या चलते-फिरते हैं, रहते हैं) – पिघली हुई भूमिगत चट्टानों पर तैरती हैं और एक-दूसरे के सापेक्ष ये प्रति वर्ष 2-15 से.मी. खिसकती हैं। तकरीबन 16.5 करोड़ वर्ष पहले गोंडवाना नामक विशाल भूखंड दो हिस्सों में बंट गया था – इसके एक टुकड़े में वर्तमान के अफ्रीका और दक्षिण अमेरिका थे और दूसरे टुकड़े में भारत, मैडागास्कर, ऑस्ट्रेलिया और अंटार्कटिका थे।

फिर लगभग 11.5 करोड़ साल पूर्व मैडागास्कर और भारत एक साथ इससे टूटकर अलग हो गए थे। लगभग 8.8 करोड़ साल पहले, भारत उत्तर की ओर बढ़ने लगा और इसने रास्ते में कुछ छोटे-छोटे भू-भाग (द्वीप) छोड़ दिए जिससे सेशेल्स बना। यह टूटा हुआ हिस्सा लगभग 5 करोड़ साल पहले युरेशियन भू-भाग से टकराया जिससे हिमालय और दक्षिण एशिया बने।

लगभग 11.5 करोड़ साल पहले डायनासौर का राज था। इस समय तक कई जीव रूपों का विकास भी नहीं हुआ था। भारत और मैडागास्कर में पाए जाने वाले डायनासौर के जीवाश्म काफी एक जैसे हैं, और ये अफ्रीका और एशिया में पाई जाने वाली डायनासौर प्रजातियों के समान नहीं हैं जो गोंडवाना के टूटने का समर्थन करता है। भारत और मैडागास्कर दोनों जगहों पर लैप्लेटोसॉरस मेडागास्करेन्सिस के अवशेष पाए गए हैं।

आणविक घड़ियां

आणविक घड़ी एक शक्तिशाली तकनीक है जिसका उपयोग यह पता लगाने के लिए किया जाता है कि जैव विकास के दौरान कोई दो जीव एक-दूसरे से कब अलग हुए थे। यह तकनीक इस अवलोकन पर आधारित है कि आरएनए या प्रोटीन अणु की शृंखला में वैकासिक परिवर्तन काफी निश्चित दर पर होते हैं। जैसे दो जीवों के हीमोग्लोबिन जैसे प्रोटीन में अमीनो एसिड में अंतर आपको यह बता सकता है कि उनके पूर्वज कितने वर्ष पहले अलग हो गए थे। आणविक घड़ियां अन्य साक्ष्यों (जैसे जीवाश्म रिकॉर्ड) से काफी मेल खाती हैं।

दक्षिण भारत और श्रीलंका में मीठे पानी और खारे पानी की मछलियों के सिक्लिड परिवार के केवल दो वंश हैं – एट्रोप्लस (जो केरल की एक खाद्य मछली है, जहां इसे पल्लती कहा जाता है) और स्यूडेट्रोप्लस। आणविक तुलना से पता चलता है कि एट्रोप्लस के निकटतम सम्बंधी मैडागास्कर में पाए जाते हैं, और इनके साझा पूर्वज 16 करोड़ वर्ष पहले अफ्रीकी सिक्लिड्स से अलग हो गए थे। चौथे तरह के सिक्लिड दक्षिण अमेरिका में पाए जाते हैं, इस प्रकार ये गोंडवाना के छिन्न-भिन्न होने का समर्थन करते हैं।

एशिया, मैडागास्कर और अफ्रीका में जीवों के वितरण में भारत एक महत्वपूर्ण स्थान रखता है। गोंडवाना के जीव भारत से निकलकर फैले। कुछ अन्य जीव यहां आकर बस गए। उदाहरण के लिए, मीठे पानी के एशियाई केंकड़े (जेकार्सिन्यूसिडी कुल)अब समूचे दक्षिण पूर्व एशिया में पाए जाते हैं लेकिन उनके सबसे हालिया साझा पूर्वज भारत में विकसित हुए थे। सूग्लोसिडे नामक मेंढक कुल सिर्फ भारत और सेशेल्स में पाया जाता है।

गढ़वाल के एचएनबी विश्वविद्यालय, पंजाब विश्वविद्यालय और जॉन्स हॉपकिन्स विश्वविद्यालय के शोधकर्ताओं ने गुजरात की वस्तान लिग्नाइट खदान से प्राप्त जीवाश्म में प्रारंभिक भारतीय स्तनधारी – चमगादड़ की एक प्रजाति, और प्रारंभिक युप्राइमेट – एक आदिम लीमर की पहचान की है। ये लगभग 5.3 करोड़ वर्ष पूर्व के जीवाश्म हैं, जो भारत-युरेशियन प्लेट्स के टकराने (या उससे ठीक पहले) का समय है।

लीमर्स के बारे में क्या? मैडागास्कर बहुत बड़ा द्वीप है, यहां विविध तरह की जलवायु परिस्थितियां हैं। साक्ष्य बताते हैं कि अफ्रीका से समुद्र पार करके एक पूर्वज प्राइमेट यहां आया था। कोई बंदर, वानर या बड़े शिकारी इसे पार नहीं कर सके थे, इसलिए यहां दर्जनों लीमर प्रजातियां फली-फूलीं।

भारत में लोरिस पाए जाते हैं, जो लीमर के निकटतम सम्बंधी हैं। ये शर्मीले, बड़ी और आकर्षक आंखों वाले निशाचर वनवासी हैं। माना जाता है कि ये भी समुद्री रास्ते से अफ्रीका से यहां की यात्रा में जीवित बच गए। सुस्त लोरिस ज़्यादातर पूर्वोत्तर राज्यों में पाए जाते हैं, और छरहरे लोरिस कर्नाटक, केरल और तमिलनाडु के सीमावर्ती क्षेत्र में पाए जाते हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://th-i.thgim.com/public/incoming/ueffmr/article65728987.ece/alternates/LANDSCAPE_615/AFP_32AD8A8.jpg

समुद्रों में परागण

भूमि पर तो परागण का काम मधुमक्खियां और पक्षी करते हैं। लेकिन समुद्र के अंदर परागण की यह महत्वपूर्ण क्रिया कौन सम्पन्न करता है? आम तौर पर समुद्र में पौधों में परागण जीवों की मदद के बगैर होता है। नर और मादा पौधे अपने शुक्राणु और अंडाणु पानी में छोड़ देते हैं और पानी की हिलोरों से अंडाणु और शुक्राणु संयोग से मिल जाते हैं।

अपवादस्वरूप, पूर्व में छोटे जलीय कृमि और क्रस्टेशियन को समुद्री घास के परागणकर्ता के रूप में पहचाना गया था। और अब एक नया परागणकर्ता मिला है: लाल शैवाल के बीच तैरने वाला लगभग 4 से.मी. लंबा क्रस्टेशियन जिसे आइसोपॉड कहते हैं। लाल शैवाल के शुक्राणु आइसोपॉड के शरीर पर चिपक जाते हैं। यह जब भोजन के लिए किसी अन्य पौधे पर जाता है तो निषेचन भी हो जाता है।

दरअसल फ्रांस की राष्ट्रीय शोध एजेंसी में मिरियम वेलेरो युरोप में लहरों के पानी से बने पोखरों में पनपने वाली लाल शैवाल ग्रेसिलेरिया ग्रैसिलिस की आनुवंशिकी का अध्ययन कर रही हैं। ग्रेसिलेरिया में मादा शैवाल अपने अंडाणु पानी में नहीं छोड़ती, बल्कि उन्हें कीप के आकार के तंतुओं के अंदर रखती है। और नर शुक्राणु किसी तरह उन तक पहुंचते हैं जबकि शुक्राणुओं में तैरने में सहायक पूंछ भी नहीं पाई जाती।

वेलेरो ने देखा कि शैवाल पर अक्सर आइसोपोड्स (इडोटिया बाल्थिका) रेंगते रहते हैं। उनका अनुमान था कि ये ही लाल शैवाल का परागण करते होंगे। सूक्ष्मदर्शी से देखने पर आइसोपॉड के शरीर पर शुक्राणु चिपके भी दिखे।

अपने अनुमान की जांच के लिए शोधकर्ताओं ने अपरागित मादा शैवाल लीं और इन्हें पानी से भरी टंकियों में नर शैवाल के साथ रखा। फिर कुछ टंकियों में आइसोपॉड छोड़े। पाया गया कि आइसोपॉड्स वाले लाल शैवाल प्रजनन में लगभग 20 गुना अधिक सफल रहे। ये नतीजे साइंस पत्रिका में प्रकाशित हुए हैं।

वेलेरो का अनुमान है कि इससे दोनों को ही लाभ पहुंचता होगा। अधिकांश इडोटिया रंग में लाल शैवाल जैसे होते हैं। तो आइसोपोड्स को शिकारियों से छिपने में मदद मिलती होगी। दूसरी ओर आइसोपॉड्स शैवाल पर उगने वाले एक-कोशिकीय शैवाल को खाते हैं। देखा गया है कि आइसोपॉड्स द्वारा ऐसे एक-कोशिकीय शैवाल के भक्षण से लाल शैवाल स्वच्छ रहती है और तेज़ी से वृद्धि करती है।

लेकिन सवाल है कि समुद्र में जीवों द्वारा परागण इतना दुर्लभ क्यों है? संभवत: यह पानी की भौतिकी के कारण है – पानी हवा से बहुत अधिक सघन है। ज़ाहिर है, मकरंद से जो ऊर्जा मिलेगी, वह एक फूल से दूसरे फूल तक यात्रा करने में लगने वाली ऊर्जा से अधिक नहीं होगी।

अन्य शोधकर्ता चेताते हैं कि उक्त अध्ययन सिर्फ यह बताता है कि आइसोपोड प्रयोगशाला में शैवाल को परागित कर सकते हैं; इससे यह नहीं कहा जा सकता कि प्रकृति में भी वे इसे इतनी ही कुशलता से कर पाते हैं। हो सकता है शैवाल के शुक्राणु को फैलाने में लहरें ही अधिक प्रभावी हों। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.ade1695/full/_20220726_0n_seaweedpollination.jpg

मधुमक्खियों को दर्द होता है

धुमक्खियों के डंक से बचने के लिए हम कई बार उन्हें मारने-भगाने की कोशिश करते हैं। लेकिन क्या ऐसा करने पर उनको दर्द महसूस होता है? जब हमारे शरीर पर कहीं चोट लगती है तो शरीर की तंत्रिका कोशिकाएं हमारे मस्तिष्क को संदेश भेजती हैं जिससे हमारा मस्तिष्क हमें दर्द का एहसास कराता है। कीटों में इस तरह का कोई जटिल तंत्र नहीं है जिससे उनको दर्द का एहसास हो सके। लेकिन एक हालिया अध्ययन से मधुमक्खियों और अन्य कीटों में भावनाओं के प्रति चेतना के साक्ष्य मिले हैं।

पूर्व में किए गए अध्ययन बताते हैं कि मधुमक्खियां और भौंरे काफी बुद्धिमान एवं चतुर प्राणी हैं। वे शून्य की अवधारणा को समझते हैं, सरल हिसाब-किताब कर सकते हैं और अलग-अलग मनुष्यों (और शायद मधुमक्खियों) के बीच अंतर भी कर सकते हैं।

ये प्राणी भोजन की तलाश के मामले में आम तौर पर काफी आशावादी होते हैं लेकिन किसी शिकारी मकड़ी के जाल में ज़रा भी फंसने पर ये परेशान हो जाते हैं। यहां तक कि बच निकलने के बाद भी कई दिनों तक उनका व्यवहार बदला-बदला रहता है और वे फूलों के पास जाने से डरते हैं। क्वींस मैरी युनिवर्सिटी के वैज्ञानिक और इस अध्ययन के प्रमुख लार्स चिटका के अनुसार मधुमक्खियां भी भावनात्मक अवस्था का अनुभव करती हैं।

मधुमक्खियों में दर्द संवेदना का पता लगाने के लिए चिटका ने जाना-माना तरीका अपनाया – लाभ-हानि के बीच संतुलन का तरीका। जैसे दांतों को लंबे समय तक स्वस्थ रखने के लिए लोग दंत चिकित्सक की ड्रिल के दर्द को सहन करने को तैयार हो जाते हैं। इसी तरह हर्मिट केंकड़े बिजली के ज़ोरदार झटकों से बचने के लिए अपनी पसंदीदा खोल को त्याग देते हैं लेकिन तभी जब झटका ज़ोरदार हो।

इसी तरीके को आधार बनाकर चिटका और उनके सहयोगियों ने 41 भवरों (बॉम्बस टेरेस्ट्रिस) को 40 प्रतिशत चीनी के घोल वाले दो फीडर और कम चीनी वाले दो फीडर का विकल्प दिया। इसके बाद शोधकर्ताओं ने इन फीडरों को गुलाबी और पीले हीटिंग पैड पर रखा। शुरुआत में तो सभी हीटिंग पैड्स को सामान्य तापमान पर रखा गया और मधुमक्खियों को अपना पसंदीदा फीडर चुनने का मौका दिया गया। अपेक्षा के अनुरूप सभी मधुमक्खियों ने अधिक चीनी वाले फीडर को चुना।

इसके बाद वैज्ञानिकों ने अधिक चीनी वाले फीडरों के नीचे वाले पीले पैड्स को 55 डिग्री सेल्सियस तक गर्म किया जबकि गुलाबी पैड्स को सामान्य तापमान पर ही रखा। यानी पीले पैड्स पर उतरना किसी गर्म तवे को छूने जैसा था लेकिन इसके बदले अधिक मीठा शरबत भी मिल रहा था। प्रोसीडिंग्स ऑफ दी नेशनल एकेडमी ऑफ साइंस में प्रकाशित रिपोर्ट के अनुसार जब चीनी से भरपूर गर्म फीडर और कम चीनी वाले ठंडे फीडरों के बीच विकल्प दिया गया तो मधुमक्खियों ने गर्म और अधिक मात्रा में चीनी वाले फीडर को ही चुना।

चीनी की मात्रा बढ़ा दिए जाने पर मधुमक्खियां और अधिक दर्द सहने को तैयार थीं। इससे लगता है कि अधिक चीनी उनके लिए एक बड़ा प्रलोभन था। फिर जब वैज्ञानिकों ने गर्म और ठंडे दोनों पैड्स वाले फीडरों में समान मात्रा में चीनी वाला शरबत रखा तो मधुमक्खियों ने पीले पैड्स पर जाने से परहेज़ किया, जिसके गर्म होने की आशंका थी। इससे स्पष्ट होता है कि वे पूर्व अनुभवों को याद रखती हैं और उनके आधार पर निर्णय भी करती हैं।

अध्ययन दर्शाता है कि क्रस्टेशियंस के अलावा कीटों और मकड़ियों में भी इस तरह की संवेदना होती है। इस अध्ययन को मानव उपभोग के लिए कीटों की खेती में बढ़ती रुचि और शोध अध्ययनों में कीटों की खैरियत के मामले में काफी महत्वपूर्ण माना जा रहा है। हालांकि अभी तक यह स्पष्ट नहीं है कि मधुमक्खियां भी वैसा ही दर्द महसूस करती हैं जैसा मनुष्य करते हैं। वैज्ञानिकों के अनुसार यह अध्ययन इस क्षमता का कोई औपचारिक प्रमाण प्रदान नहीं करता है। दरअसल, कीटों में दर्द संवेदना का पता लगाना थोड़ा मुश्किल काम है। पूर्व में हुए अध्ययन फल मक्खियों के तंत्रिका तंत्र में जीर्ण दर्द के अनुभव के संकेत देते हैं लेकिन कीटों में दर्द सम्बंधी तंत्रिका तंत्र होने को लेकर संदेह है।     

कुल जीवों में से कम से कम 60 प्रतिशत कीट हैं। ऐसे में इन्हें अनदेखा करना उचित नहीं है। आधुनिक विज्ञान मूलत: मानव-केंद्रित है जो अकशेरुकी जीवों को अनदेखा करता आया है। उम्मीद है कि इस अध्ययन से रवैया बदलेगा। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.ade1294/abs/_20220726_on_bees_pain.jpg
https://cdn.vox-cdn.com/thumbor/NbhbdESq0aJ-jpG06aaR6HrTu90=/0x0:2898×2521/1200×0/filters:focal(0x0:2898×2521):no_upscale()/cdn.vox-cdn.com/uploads/chorus_asset/file/23925113/highres.jpeg

जीवों में तापमान नियंत्रण काफी देर से अस्तित्व में आया

नियततापी (एंडोथर्म) जीव उन्हें कहते हैं जो अपने शरीर का तापमान आंतरिक प्रक्रियाओं के द्वारा नियंत्रित करते हैं। यह स्तनधारियों, पक्षियों के अलावा कुछ विलुप्त डायनासौर की खासियत है। इस तरह तापमान का नियमन करने के लिए उन्हें अधिक ऊर्जा लगती है, लेकिन यह विशेषता उन्हें जाड़ों और रात के समय भी सक्रिय रहने में मदद करती है। इसके विपरीत, एक्सोथर्मिक (बाह्यतापीय) जीव ऐसा नहीं कर सकते; इनके शरीर का तापमान वातावरण के तापमान के अनुसार बदलता रहता है। जीवाश्म विज्ञानी इस बात से तो सहमत हैं कि प्रारंभिक कशेरुकी जीव बाह्यतापीय थे। लेकिन संशय इस बात पर है कि जीवों में तापमान नियमन की क्षमता कब विकसित हुई।

आम तौर पर देखा गया है कि नियततापी जीवों में हड्डियां तेज़ी से बढ़ती हैं और उनके शरीर पर बाल या पिच्छ (फेदर) पाए जाते हैं। इसलिए नियततापिता का निर्धारण करने के लिए जीव वैज्ञानिक इन्हीं गुणधर्मों का अध्ययन करते आए हैं। लेकिन ये गुणधर्म नियततापिता के सटीक संकेतक नहीं हैं और संभवत: इनका प्रादुर्भाव अन्य कारणों से हुआ था।

अब शोधकर्ताओं के एक दल ने इसी काम के लिए एक सर्वथा नई विधि का उपयोग किया है। यह है आंतरिक कान में पाई जाने वाली अर्धवृत्ताकार नलिकाएं (सेमीसर्कुलर कैनाल्स)। ये तीन नलिकाएं होती हैं जो जीव को अपनी स्थिति भांपने तथा संतुलन बनाए रखने में मदद करती हैं। जीवाश्म वैज्ञानिक इनकी मदद से प्राचीन जीवों में विचरण के पैटर्न का अनुमान लगाते आए हैं।

नेशनल म्यूज़ियम ऑफ नेचुरल हिस्ट्री के जीवाश्म विज्ञानी रोमन डेविड के दल ने इनकी मदद से नियततापिता के निर्धारण का प्रयास किया है। जीवाश्म नमूनों के अध्ययन के दौरान डेविड का ध्यान अर्धवृत्ताकार नलिकाओं की साइज़ और संरचना में विविधता  पर पड़ा। खास तौर से उनका ध्यान इस बात पर गया कि शरीर के आकार के हिसाब से अन्य कशेरुकियों की तुलना में स्तनधारियों की अर्धवृत्ताकार नलिकाएं छोटी होती हैं। जैसे, व्हेल (एक स्तनधारी) आकार में व्हेल-शार्क (एक मछली) से बड़ी होती है लेकिन अर्धवृत्ताकार नलिकाओं के मामले में व्हेल-शार्क बाज़ी मार लेती है। दरअसल जीव जगत में सबसे बड़ी अर्धवृत्ताकार नलिकाएं व्हेल-शार्क की होती हैं।

इसके अलावा उनका ध्यान नलिकाओं के अंदर भरे तरल (एंडोलिम्फ) पर भी गया। एंडोलिम्फ का गाढ़ापन तापमान के साथ बदलता है। जैसे तेल गरम होने पर पतला और ठंडा होने पर गाढ़ा हो जाता है। डेविड का अनुमान था कि एंडोलिम्फ के गाढ़ेपन और अर्धवृत्ताकार नलिका के आकार के बीच कोई सम्बंध है, और दोनों नियततापिता का संकेत दे सकते हैं।

इस परिकल्पना को जांचने के लिए डेविड और उनकी टीम ने अल्पाका, टर्की और छिपकली समेत 277 जीवित प्रजातियों की कान की अर्धवृत्ताकार नलिकाओं का अध्ययन किया। देखा गया कि नियततापी जीवों का एंडोलिम्फ पतला था और उनकी अर्धवृत्ताकार नलिकाएं छोटी और पतली थी। दूसरी ओर, बाह्यतापीय जीवों का एंडोलिम्फ गाढ़ा था और अर्धवृत्ताकार नलिकाएं बड़ी और मोटी थी।

नियततापिता कब विकसित हुई यह जानने के लिए उन्होंने इस जानकारी को जीवाश्मित नमूनों पर लागू किया। चूंकि ये नलिकाएं नरम ऊतकों से बनी होती हैं, इसलिए अक्सर ये जीवाश्मित नहीं हो पाती; लेकिन ये जिस खोखली हड्डी के अंदर होती हैं वे जीवाश्मित हो जाती हैं। और इन खोखली हड्डियों की मदद से नलिकाओं के आकार-आकृति का अनुमान लगाया जा सकता है। शोधकर्ताओं ने 64 विलुप्त प्रजातियों की जांच की। इनमें स्तनधारी, 23 करोड़ वर्ष पूर्व के स्तनधारी-समान पूर्वज और उसके भी पूर्व के गैर-स्तनधारी पूर्वज शामिल थे।

नेचर में प्रकाशित नतीजों के अनुसार ट्राएसिक काल के अंत में, लगभग 23 करोड़ वर्ष पूर्व, छोटी और पतली अर्धवृत्ताकार नलिकाओं वाले जीव अस्तित्व में आए थे, इसी समय गैर-स्तनधारी पूर्वज से स्तनधारी-समान पूर्वज विकसित हुए थे। और यह परिवर्तन अपेक्षाकृत रूप से अचानक, 10 लाख से भी कम वर्षों में, हुआ था। अर्थात यदि छोटी व पतली अर्धवृत्ताकार नलिकाओं को नियततापिता का लक्षण माना जाए तो यह सबसे पहले स्तनधारी जीवों में लगभग 23 करोड़ वर्ष नज़र आई होगी। यह पूर्व में लगाए गए अनुमान से 2 करोड़ वर्ष बाद का समय है। वैसे एक बात पर ध्यान देना ज़रूरी है – यह नहीं कहा जा रहा है कि अर्धवृत्ताकार नलिकाएं नियततापिता या तापमान नियंत्रण में कोई भूमिका निभाती हैं। आशय सिर्फ यह है कि ये पतली-छोटी नलिकाएं और नियततापिता साथ-साथ प्रकट होते हैं और छोटी नलिकाओं को नियततापी जीवों का द्योतक माना जा सकता है।

अन्य शोधकर्ताओं के मुताबिक क्रमिक विकास की बजाय ऐसे अचानक परिवर्तन की बात को साबित करने के लिए अधिक अध्ययन की आवश्यकता है। बहरहाल नियततापिता के भावी अध्ययनों में अर्धवृत्ताकर नलिका का अध्ययन महत्वपूर्ण भूमिका निभा सकता है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41586-022-04963-z/MediaObjects/41586_2022_4963_Fig1_HTML.png
https://cdn.zmescience.com/wp-content/uploads/2022/07/inner-ear-mammalimorphs.webp

विलुप्ति का खतरा सबसे अनोखे पक्षियों पर है

वैसे ही दुख की बात है कि आने वाले समय में पृथ्वी से हर वर्ष हज़ारों प्रजातियां विलुप्त हो जाएंगी। लेकिन उससे भी ज़्यादा दुख की बात है कि हाल ही में किए गए दो स्वतंत्र अध्ययनों से पता चला है कि विलुप्ति का सबसे अधिक खतरा उन पक्षियों पर है जो अपने पारिस्थितिकी तंत्र में महत्वपूर्ण भूमिका निभाते हैं जिनका स्थान शायद कोई और नहीं ले सकता।

एक अध्ययन के मुताबिक आकर्षक चोंच वाले टूकन पक्षी दक्षिण अमेरिका के वर्षा वनों में उन बड़े-बड़े बीजों और फलों को फैलाने में महत्वपूर्ण भूमिका निभाते हैं जो अन्य पक्षियों के लिए संभव नहीं है। दुर्भाग्यवश, टूकन के साथ-साथ गिद्ध, आईबेसिस और अन्य अनोखी प्रजातियों की विलुप्ति की आशंका सबसे अधिक है। ऐसा हुआ तो आबादियां अधिक एकरूप होने लगेंगी।

एक अन्य अध्ययन का अनुमान है कि जलवायु परिवर्तन के कारण कई प्रजातियां ठंडे क्षेत्रों की ओर प्रवास करेंगी जिसके चलते एक जैसी प्रजातियों की संख्या में वृद्धि होने की संभावना बढ़ सकती है। युनिवर्सिटी ऑफ मोंटाना के पारिस्थितिकीविद जेडेडिया ब्रॉडी इस संकट के लिए मानव क्रियाकलापों को ज़िम्मेदार मानते हैं।

प्रत्येक पारिस्थितिकी तंत्र विभिन्न भूमिकाएं निभाने वाले अनेकों जीवों पर निर्भर होता है। पक्षियों का उदाहरण लिया जाए तो हम देखेंगे कि कुछ पक्षी बीजों को फैलाने में मददगार होते हैं तो कुछ मृत जीवों को खाकर पुनर्चक्रण में सहायक होते हैं। पक्षियों में लंबी और नुकीली चोंच, लंबे पैर आदि विशेषताएं विभिन्न प्रकार की भूमिकाओं को अंजाम देने में सहायक होती हैं। ऐसे में एक पारिस्थितिकी तंत्र में यदि एक ही तरह की प्रजातियां हों तो वे विभिन्न भूमिकाओं को अंजाम नहीं दे पाएंगी।

कुछ पक्षियों में प्रमुख विशेषताओं के गायब होने का पता लगाने के लिए युनिवर्सिटी ऑफ शेफील्ड की एमा ह्यूजेस ने कई वर्षों तक लगभग 8500 पक्षियों की चोंच के आकार, निचले पंजों और पंख की लंबाई, और संग्रहालय में रखे शरीर के नमूनों के आकार का मापन किया और प्रजातियों के बीच समानताओं और अंतरों को समझने के लिए सांख्यिकी तकनीकों का उपयोग किया। इस अध्ययन में सॉन्गबर्ड जैसे पक्षी आकार के आधार पर एक ही समूह में आ गए। दूसरी ओर एल्बेट्रास जैसे विशाल पक्षी, छोटे हमिंगबर्ड और आईबेसिस अपनी लंबी गर्दन तथा घुमावदार चोंच के चलते थोड़े अलग से दिखे।

इसके बाद शोधकर्ताओं ने उन प्रजातियों को अपनी सूची में से अलग किया जिनके विलुप्त होने की संभावना इंटरनेशनल युनियन फॉर कंज़रवेशन की रेड लिस्ट के अनुसार ज़्यादा थी। करंट बायोलॉजी में प्रकाशित रिपोर्ट के अनुसार सबसे जोखिमग्रस्त प्रजातियां वे हैं जो शरीर के आकार और पारिस्थितिकी भूमिका में अनोखी हैं। जब शोधकर्ताओं ने सबसे अधिक से सबसे कम जोखिमग्रस्त प्रजातियों को सूचीबद्ध करना शुरू किया तो सबसे पहले टूकन, हॉर्नबिल, हमिंगबर्ड और अन्य अनोखी प्रजातियां बाहर हुईं जबकि एक जैसे पक्षी (फिंचेस, स्टारलिंग्स वगैरह) लिस्ट में बने रहे।

इस संदर्भ में कौन-से क्षेत्र सबसे अधिक प्रभावित होंगे, इसका पता लगाने के लिए शोधकर्ताओं ने 14 प्रमुख प्राकृतवासों या बायोम (जैसे उष्णकटिबंधीय क्षेत्र) में रहने वाले पक्षियों का विश्लेषण किया। उन्होंने पाया कि प्रजातियों का एकरूपीकरण 14 में से 12 क्षेत्रों को प्रभावित करेगा और इसका सबसे अधिक प्रभाव जलमग्न घास के मैदानों और उष्णकटिबंधीय जंगलों में होगा। सबसे अधिक संकटग्रस्त क्षेत्रों में वियतनाम, कंबोडिया और हिमालय की तराई के साथ-साथ हवाई जैसे द्वीप भी शामिल हैं। ब्रॉडी के अनुसार कुछ मामलों में इन प्रजातियों द्वारा निभाई जाने वाली अद्वितीय पारिस्थितिक भूमिकाओं को निभाने में सक्षम कोई और नहीं है।

सेन्केनबर्ग बायोडाइवर्सिटी एंड क्लाइमेट रिसर्च सेंटर की पारिस्थितिकीविद एल्के वोस्केम्प द्वारा किए गए एक अन्य अध्ययन में एकरूपीकरण के एक और चालक की पहचान की गई है: जलवायु परिवर्तन के कारण पक्षियों के इलाकों में परिवर्तन। वोस्केम्प और उनकी टीम ने 9882 पक्षियों के वर्तमान इलाकों का पता लगाया। इसके बाद उन्होंने जलवायु मॉडल का उपयोग करते हुए यह अनुमान लगाया कि वर्ष 2080 तक इन प्रजातियों का मुख्य आवास कहां होगा। अंत में टीम ने यह पता लगाया कि यह परिवर्तित वितरण पक्षियों के समुदायों को कैसे बदलेगा।

जैसा कि शोधकताओं का अनुमान था, उष्णकटिबंधीय और उपोष्णकटिबंधीय क्षेत्र में सबसे अधिक प्रजातियों के गायब होने की संभावना है – वे या तो विलुप्त हो जाएंगी या अन्य इलाकों में चली जाएंगी। प्रोसीडिंग्स ऑफ दी रॉयल सोसाइटी बी में प्रकाशित रिपोर्ट के अनुसार इन इलाकों में कुछ बाहरी पक्षियों का आगमन भी अवश्य होगा लेकिन अधिक संभावना यही है कि अधिकांश पक्षी निकटता से सम्बंधित होंगे और उनमें उस इलाके में रहने के लिए ज़रूरी गुण पाए जाएंगे।     

उत्तरी अमेरिका और युरेशिया में पक्षी प्रजातियों में वृद्धि होगी क्योंकि पक्षी गर्म से ठंडे इलाकों की तरफ प्रवास करेंगे। लेकिन इन इलाकों में भी नए पक्षी मौजूदा प्रजातियों से निकटता से सम्बंधित होंगे।

उपरोक्त दोनों ही अध्ययन संकेत देते हैं कि विश्व में पक्षियों में एकरूपता आएगी जो पारिस्थितिकी तंत्र के लिए एक बड़ा झटका होगा। पूर्व में किए गए कुछ अध्ययनों से यह भी पता चला है ऐसा समरूपीकरण उभयचरों और स्तनधारियों में भी हो रहा है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://i0.wp.com/imageio.forbes.com/specials-images/imageserve/62dfba219855a5e7832ace28/0x0.jpg?resize=750,375

क्यों कुछ जानवर स्वजाति भक्षी बन जाते हैं?

किसी को इस बात का बिलकुल भी अंदाजा नहीं था कि कैलिफोर्निया में कपास के खेतों को माहू (एफिड्स) के हमले से बचाने का एक प्रयास स्वजातिभक्षण विस्फोट का रूप ले लेगा। दरअसल हरे रंग के भुक्खड़ छोटे माहू पौधों से रस चूसकर उन पर फफूंदयुक्त अपशिष्ट और घातक विषाणु छोड़ जाते हैं। इससे फसल तबाह हो जाती है। कैलिफोर्निया विश्वविद्यालय के कीट विज्ञानी जे रोसेनहाइम की टीम ने कपास की फसल को इनके प्रकोप से बचाने के लिए उन पर स्थानीय माहू छोड़े जिन्हें बिग आइड एफिड्स कहते हैं।

कुछ समय के लिए तो सब ठीक-ठाक चला, हरे माहू पर नियंत्रण भी हुआ। लेकिन फिर, जैसे ही पौधों पर जगह कम पड़ने लगी तब कुछ अप्रत्याशित घटा: बिग आइड माहुओं ने हरे माहुओं पर हमला करना बंद कर दिया और एक-दूसरे का शिकार करने लगे, यहां तक कि वे अपने ही अंडों को भी खा गए।

इकॉलॉजी में प्रकाशित अपनी समीक्षा में शोधकर्ता बताते हैं कि जीव जगत में, एक-कोशिकीय अमीबा से लेकर सैलेमेण्डर तक में, स्वजाति भक्षण यानी अपने जैसे जीवों का भक्षण देखा जाता है। लेकिन यह इतना भी आम नहीं है; शोधकर्ताओं ने इसका कारण भी स्पष्ट किया है।

पहला तो स्वजाति भक्षण जोखिम भरा है। यदि किसी जानवर के पास पैने पंजे और दांत हैं, तो ज़ाहिर है कि उसके बंधुओं और साथियों के पास भी पैने पंजे और दांत होंगे। उदाहरण के लिए, मादा मेंटिस संभोग के दौरान अपने से छोटे कद-काठी के नर का सरकलम करने के लिए कुख्यात है, लेकिन कभी-कभी प्रतिस्पर्धा समान कद-काठी वाली अन्य मादा के साथ हो जाती है। जब एक मादा दूसरी की टांग को चबा डालती है तो दूसरी किसी भी तरह अपनी प्रतिद्वंद्वी मादा को मार डालती है।

रोगों की दृष्टि से भी स्वजाति भक्षण जोखिम पूर्ण लगता है। कई रोगजनक मेजबान विशिष्ट होते हैं, इसलिए यदि कोई स्वजाति भक्षी अपने किसी संक्रमित साथी को खाता है तो उस साथी का संक्रमण मिलने की भी संभावना होती है। कुछ मानव समुदायों या समूहों को इसके कारण मुश्किलों का सामना करना पड़ा है। इसका सबसे प्रसिद्ध उदाहरण है कुरु नामक दुर्लभ और घातक मस्तिष्क रोग का प्रसार। इसने 1950 के दशक में न्यू गिनी के फोर लोगों को तबाह कर दिया था। कुरु रोग समुदाय के एक अंत्येष्टि अनुष्ठान के माध्यम से पूरे फोर समुदाय में फैला था। इसमें मृतक का परिवार मृतक का मांस (मस्तिष्क सहित) पका कर खाते हैं। जब फोर समुदाय ने इस अनुष्ठान को बंद कर दिया तो उनमें कुरु का प्रसार रुक गया था।

अंत में स्वजाति भक्षण किसी जीन को हस्तांतरित करने का सबसे बुरा तरीका है। जैव विकास के दृष्टिकोण से अंतिम चीज़ है अपनी संतान को खाना। यही एक कारण है कि बड़ी आंखों वाले एफिड अपनी संतानों को खाकर अपनी आबादी को सीमित रखते हैं। यदि वे संख्या में बहुत अधिक हो जाते हैं – जैसा कि एफिड प्रयोग के मामले में हुआ – तो सभी जगह उनके अंडे होते हैं। और चूंकि वे अपने अंडों को नहीं पहचान पाते तो वे स्वयं के अंडे भी खा जाते हैं।

हालांकि स्वजातिभक्षण कोई वांछनीय चीज़ नहीं है, लेकिन कुछ परिस्थितियां इस जोखिम पूर्ण व्यवहार को उपयुक्त बना देती हैं। यदि कोई जीव भूख से मरने वाला है तो अपने किसी सगे या वारिस को खाकर वह अपना अस्तित्व तो बचा ही रहा है। देखा गया है कि भूख कभी-कभी सैलेमेण्डर के लार्वा को अपने साथी को कुतरने या खाने के लिए उकसाती है।

अपनी समीक्षा में शोधकर्ता बताते हैं कि विशिष्ट हार्मोन – अकशेरुकियों में ऑक्टोपामाइन और कशेरुकी जीवों में एपिनेफ्रिन – स्वजाति भक्षण में वृद्धि के लिए ज़िम्मेदार हैं। जैसे-जैसे प्रजाति की आबादी अधिक होने लगती है और भोजन मिलना मुश्किल हो जाता है तो इन हार्मोन की मात्रा बढ़ने लगती है। और भूख से त्रस्त जीव जो भी सामने आता है उसे झपटने लगते हैं।

अध्ययन यह भी बताता है कि कैसे कुछ परिस्थितियां कुछ युवा उभयचरों जैसे टाइगर सेलेमैण्डर और कुदाल जैसे पैर वाले मेंढक को महास्वजातिभक्षी बना देते हैं। जब किसी तालाब में बहुत सारे लार्वा होते हैं तो कुछ टैडपोल स्वजातिभक्षी रूप धारण कर लेते हैं। इनमें जबड़े बड़े हो जाते हैं और नकली दांत निकल आते हैं। इसी तरह का स्वजाति भक्षण घुन, मछली और यहां तक कि फल मक्खियों में भी पनपता है। फल मक्खियों में तो ऐसे जीव अपने साथियों की तुलना में 20 प्रतिशत अधिक दांतों से लैस हो जाते हैं।

अन्य जीव जैसे खूंखार केन टोड इसका विपरीत तरीका अपनाते हैं। यदि भूखे स्वजाति भक्षी केन टोड आसपास होते हैं तो अन्य टैडपोल का विकास तेज़ हो जाता है और वे इतने बड़े हो जाते हैं कि उन्हें निगलना असंभव हो जाता है।

रोसेनहाइम के मुताबिक स्वजाति भक्षण का परिणाम सकारात्मक होता है: इसके चलते कम संख्या वाली, स्वस्थ आबादी विकसित होती है। इसी कारण वे इसे बर्बर कहने से कतराते हैं। उनके मुताबिक मनुष्यों की बात हो तो अच्छी नहीं लगती लेकिन प्रकृति में संतुलन लाने में स्वजातिभक्षण का काफी योगदान है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.ade0210/abs/_20220719_on_cannibalism_praying_mantis.jpg

मोनार्क तितलियां संकटग्रस्त सूची में

हाल ही में वैज्ञानिकों ने नारंगी-काले पंखों वाली मोनार्क तितली की तेज़ी से घटती संख्या के मद्देनज़र संकटग्रस्त प्रजाति की सूची में डाल दिया है। अनुमान है कि उत्तरी अमेरिका में मोनार्क तितलियों की आबादी 10 वर्षों में 22-72 प्रतिशत के बीच घटी है।

अंतर्राष्ट्रीय प्रकृति संरक्षण संघ ने पहली बार प्रवासी मोनार्क तितली को संकटग्रस्त प्रजातियों की ‘रेड लिस्ट’ में शामिल किया है और यह ‘विलुप्ति’ से बस दो कदम दूर है।

मिशिगन स्टेट युनिवर्सिटी के संरक्षण जीवविज्ञानी निक हद्दाद कहते हैं कि इनकी गिरावट की दर चिंतनीय है। कल्पना की जा सकती है कि जल्द ही यह तितली और भी बुरी स्थिति में होगी। पूर्वी यू.एस.ए. की मोनार्क तितलियों पर किए गए अध्ययन के आधार पर हद्दाद का अनुमान है कि 1990 के दशक के बाद से तितलियों की आबादी में 85 से 95 प्रतिशत तक की गिरावट आई है।

ज्ञात कीट प्रजातियों में उत्तरी अमेरिका की मोनार्क तितलियां सबसे लंबा प्रवास करती हैं। मध्य मेक्सिको में जाड़ा बिताने के बाद ये तितलियां उत्तर की ओर प्रवास करती हैं। हज़ारों किलोमीटर लंबे सफर में ये कई पीढ़ियां पैदा करती हैं। दक्षिणी कनाडा पहुंचने वाली संतानें गर्मियों के अंत में वापस मैक्सिको की यात्रा शुरू कर देती हैं।

मोनार्क तितलियों का एक छोटा समूह तटीय कैलिफोर्निया में जाड़ा बिताता है, फिर वसंत और गर्मियों में रॉकी माउंटेन्स के पश्चिम में कई राज्यों में फैल जाता है। इस आबादी में पूर्वी मोनार्क की तुलना में और भी अधिक गिरावट देखी गई है। हालांकि पिछले जाड़ों में इनकी संख्या में थोड़ी वृद्धि दिखी थी।

मध्य और दक्षिण अमेरिका की गैर-प्रवासी मोनार्क तितलियों को लुप्तप्राय की श्रेणि में शामिल नहीं किया है।

पश्चिमी तितलियों की निगरानी करने वाली और गैर-मुनाफा संस्था ज़ेर्सेस सोसाइटी की एम्मा पेल्टन का कहना है कि तितलियां उनके घटते आवास स्थलों और खरपतवार-नाशकों व कीटनाशकों के बढ़ते उपयोग के साथ-साथ जलवायु परिवर्तन के कारण खतरे में हैं।

इन तितलियों की इल्लियां मिल्कवीड के पौधे पर पलती हैं। ऐसे पौधे लगाकर इन तितलियों को बचाया जा सकता है।

संयुक्त राज्य अमेरिका ने मोनार्क तितली को जोखिमग्रस्त प्रजाति अधिनियम के तहत अधिसूचित नहीं किया है, लेकिन कई पर्यावरण समूहों का मानना है कि इसे सूचीबद्ध किया जाना चाहिए। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.nps.gov/subjects/pollinators/images/migration-map1.jpg?maxwidth=1200&maxheight=1200&autorotate=false

कठफोड़वा के मस्तिष्क की सुरक्षा का सवाल

ह तो सब जानते हैं कि कठफोड़वा ज़ोरदार प्रहार करके पेड़ों में कोटर बनाता है। इस प्रहार के दौरान उसका दिमाग महफूज़ कैसे रहता है?

लंबे समय से वैज्ञानिक मानते आए हैं कि पेड़ पर चोंच से प्रहार करते समय कठफोड़वा की खोपड़ी की स्पंजी हड्डी उसके मस्तिष्क की सुरक्षा करती है। इसी से प्रेरणा लेकर इंजीनियरों ने सुरक्षा हेलमेट और शॉक-एब्सॉर्बिंग इलेक्ट्रॉनिक उपकरण डिज़ाइन किए हैं। लेकिन हालिया विश्लेषण से पता चला है कि कठफोड़वा का ध्यान अपने मस्तिष्क की सुरक्षा के बजाय प्रहार की ताकत पर अधिक होता है।

चाहे भोजन की तलाश हो, पेड़ में घर बनाना हो या अपने साथियों को लुभाना, कठफोड़वा प्रति सेकंड लगभग 20 बार अपनी चोंच से प्रहार करता है। और फिर अपने रोज़मर्रा के काम पर निकल जाता है।

यदि फुटबॉल मैच के दौरान विपरीत दिशा से आ रहे दो प्रतिद्वंदी आपस में टकराते हैं, तो टक्कर के बाद शरीर और सिर तो स्थिर हो जाते हैं लेकिन मस्तिष्क आगे गति करता रहता है। सामने वाला भाग दबाव और पिछला भाग खिंचाव महसूस करता है जिसके कारण कभी-कभी मस्तिष्क को गंभीर क्षति पहुंचती है।

इस विषय में युनिवर्सिटी ऑफ एंटवर्प के बायोमेकेनिस्ट और इस अध्ययन के प्रमुख लेखक सैम वान वासेनबर्ग बताते हैं कि कठफोड़वा मानव मस्तिष्काघात सीमा से तीन गुना अधिक त्वरण से चोंच मारने के बावजूद बिना किसी नुकसान के बच निकलता है। इस लचीलेपन ने पूर्व में शोधकर्ताओं को पक्षियों की रक्षा करने वाली विशेष संरचना की खोज करने के लिए प्रेरित किया था। कुछ विशेषज्ञों का अनुमान था कि इसकी खोपड़ी की स्पंजी हड्डी एयरबैग के रूप में कार्य करती है जबकि कुछ अन्य के अनुसार इसकी लंबी जीभ मस्तिष्क के लिए सीटबेल्ट का काम करती है।  

वैन वासेनबर्ग और उनके सहयोगियों ने एक नया तरीका अपनाया। उन्होंने चोंच मारने वाले पक्षियों में प्रशामक प्रभाव का पता लगाने का प्रयास किया। इसके लिए शोधकर्ताओं ने तीन प्रजातियों के छह कठफोड़वों के 109 हाई-स्पीड विडियो रिकॉर्ड किए। करंट बायोलॉजी में प्रकाशित रिपोर्ट के अनुसार लकड़ी पर प्रहार करते कठफोड़वा की चोंच और सिर के विशेष बिंदुओं को ट्रैक करते हुए वैज्ञानिकों ने पाया कि कठफोड़वे की खोपड़ी सख्त बनी रही यानी उसका सिर चोंच की तुलना में जल्दी स्थिर नहीं हुआ।       

रिकॉर्डिंग के आधार पर एक सिमुलेशन मॉडल भी तैयार किया गया। इस मॉडल में शॉक-एब्सॉर्बर जोड़ने के बाद एक बार फिर से परीक्षण किया गया जिससे यह स्पष्ट हुआ कि इन पक्षियों के मस्तिष्क की रक्षा करने में शॉक-एब्सार्बर की कोई भूमिका नहीं है। यदि सिर इस टकराव के प्रभाव को अवशोषित कर ले तो यह पक्षी इतना अधिक बल नहीं लगा पाएगा। यानी कठफोड़वा अपनी चोंच से कम गहराई तक लकड़ी खोद पाएगा। यानी शॉक एब्सॉर्बर हो तो उतनी ही लकड़ी खोदने के लिए उसे ज़्यादा ज़ोरदार प्रहार करना होगा। यह वैसा ही होगा जैसे दीवार पर कील ठोकना है और हथौड़े और कील के बीच तकिया रख दिया जाए।  

लेकिन सवाल तो यह है कि कठफोड़वा खुद को चोट लगने से कैसे बचाता है? इस अध्ययन के लेखक के अनुसार मस्तिष्क का आकार और अभिविन्यास उसकी रक्षा करते हैं। यहां तक कि सबसे मज़बूत प्रहार भी उसके मस्तिष्क पर बहुत कम प्रभाव डालता है। इसके अलावा, संभवत: कठफोड़वा में मस्तिष्क को होने वाली मामूली क्षति को रोकने और मरम्मत करने के लिए विशेष प्रणालियां होती हैं।    

अलबत्ता, कुछ वैज्ञानिकों ने अभी भी पक्षी के भीतर शॉक-एब्सार्बर के विचार को खारिज नहीं किया है। फिर भी यह अध्ययन काफी महत्वपूर्ण है जो कठफोड़वा को बेहतर ढंग से समझने में मदद कर सकता है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencealert.com/images/2022-07/processed/PileatedWoodpeckerNesting_600.jpg
https://res.cloudinary.com/dk-find-out/image/upload/q_80,w_1920,f_auto/DCTM_Penguin_UK_DK_AL327459_dd23hs.jpg

भ्रमों का शिकार अंधा सांप – हरेन्द्र श्रीवास्तव

बारिश के मौसम में तरह-तरह के सांप दिखाई देते हैं। करैत, कोबरा, वाइपर, वुल्फ स्नेक, चेकर्ड कीलबैक और सैंड बोआ आदि घरों के समीप, खेत-खलिहानों और बाग-बगीचों में अक्सर दिख जाते हैं। इन्हीं दिनों में नम जगहों पर एक बेहद छोटे और पतले आकार का केंचुए जैसा अत्यन्त चमकीला जीव भी बहुत तेज़ी से ज़मीन और फर्श पर रेंगता दिखता है। दरअसल, यह केंचुआ नहीं बल्कि एक सांप है। इसे अंधा सांप कहते हैं। अंधा सांप दुनिया का सबसे छोटा सांप है। इसे तेलिया सांप के नाम से भी जाना जाता है।

इसे अंधा सांप क्यों कहते हैं? दरअसल इस सांप की आंखों की बनावट ऐसी होती है कि यह केवल उजाले और अंधेरे में फर्क कर सकता है। वैसे भी सांपों की दृष्टि क्षमता बेहद कमज़ोर होती है और अंधा सांप तो इस मामले में और भी ज़्यादा कमज़ोर होता है। अंधे सांप की आंखें दो काले बिन्दुओं की तरह दिखाई देती हैं। इन्हीं सब कारणों के चलते इन सांपों को अंधा सांप कहते हैं। अंग्रेज़ी में इसे ब्लाइंड स्नेक या वार्म स्नेक के नाम से भी जाना जाता है।

दुनिया भर में अंधे सांपों की लगभग 250 प्रजातियां पाई जाती हैं। भारत में 15 से भी ज़्यादा प्रजातियां रिकॉर्ड की गई हैं, जिनमें ब्राह्मणी ब्लाइंड स्नेक सबसे आम है। अंधे सांप मुख्यतः नमीयुक्त जगहों, भूमिगत स्थानों और सड़े-गले पत्तों के ढेर के नीचे पाए जाते हैं। ये सांप तापमान के उतार-चढ़ाव के प्रति बेहद संवेदनशील होते हैं। भौगोलिक विविधता एवं जलवायु के अनुसार अंधे सांपों का रंग कत्थई, काला और हल्का लाल होता है। मैंने अपने ग्रामीण क्षेत्रों में अंधे सांपों का अवलोकन करते हुए पाया कि ये प्रायः संध्याकाल अथवा गोधूलि बेला में ही ज़्यादा सक्रिय होते हैं।

बारिश का मौसम आते ही अंधे सांपों की सक्रियता बढ़ जाती है। वर्षा काल में गीली ज़मीन और फर्श पर बेहद तेज़ी से रेंगते इन खूबसूरत एवं विषहीन सांपों को देखकर अधिकांश लोग भ्रमवश इन्हें कोबरा और करैत जैसे विषैले सांपों का बच्चा समझ लेते हैं। अंधे सांपों के बारे में उचित जानकारी ना होने तथा इन्हें कोबरा और करैत का बच्चा समझने के चलते लोग इन्हें जान से मार देते हैं।

अंधे सांप का मुख्य आहार चींटियों तथा दीमकों जैसे कीटों के लार्वा हैं। वहीं, कई पक्षी और मेंढक आदि प्राणी अपने भोजन हेतु इन अंधे सांपों पर निर्भर हैं।

आधुनिक ज्ञान-विज्ञान के युग में भी हमारे समाज में सांपों के विषय में लोगों को ज़्यादा जानकारी नहीं है। लोगों के बीच इन अंधे सांपों के प्रति फैले भ्रम के चलते पता नहीं कितने अंधे सांप मारे जाते हैं। चींटी एवं दीमकों की आबादी को नियंत्रित कर ये हमारे पर्यावरण तथा खाद्य-शृंखला के संतुलन में अहम भूमिका निभाते हैं। आज ज़रूरत है इन सांपों के संरक्षण की और यह तभी संभव है जब हम इनके विषय में ज़्यादा जानें, अवलोकन करें तथा इनके पर्यावरणीय महत्व को समझें। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Davidraju_Worm_Snake.jpg/1024px-Davidraju_Worm_Snake.jpg

प्राचीन भेड़ियों से कुत्तों की उत्पत्ति के सुराग

कुत्तों का पालतूकरण शोधकर्ताओं के लिए एक पहेली रहा है और कोई स्पष्ट जानकारी नहीं है कि कुत्तों की उत्पत्ति कब और कहां हुई। प्राचीन कुत्तों से लेकर आधुनिक कुत्तों तक की हड्डियों के डीएनए के विश्लेषण के बावजूद कोई निर्णायक परिणाम हासिल नहीं हुआ था। इस गुत्थी को सुलझाने के लिए हाल ही में शोधकर्ताओं ने उन प्राचीन भेड़ियों के आवासों का अध्ययन किया, जिन्होंने कुत्तों को जन्म दिया है।

इस नए अध्ययन में, पुख्ता निष्कर्ष तो नहीं निकले हैं लेकिन कुत्तों के पालतूकरण का मोटा-मोटा क्षेत्र तय किया गया है – पूर्वी-युरेशिया। अध्ययन से यह संकेत भी मिले हैं कि कुत्तों को शायद एक से अधिक बार पालतू बनाया गया है।

गौरतलब है कि लगभग 15,000 से 23,000 वर्ष पूर्व मनुष्यों और भेड़ियों के बीच पालतूकरण की प्रक्रिया की शुरुआत हुई थी। यह लगभग पिछले हिमयुग का दौर था जब उच्च अक्षांश वाले क्षेत्रों में कड़ाके की ठंड और शुष्क जलवायु हुआ करती थी। अभी तक के सबसे प्रचलित सिद्धांत के अनुसार थोड़े कम डरपोक मटमैले भेड़िए मनुष्यों की जूठन खाने के लिए उनके रिहायशी क्षेत्रों के करीब आने लगे। समय के साथ सौम्य व्यवहार और लक्षणों के जीन अगली पीढ़ियों में पहुंचने लगे। मनुष्यों को ये नए साथी शिकार और रखवाली के लिए उपयोगी लगे।

इस घटना का सही स्थान बता पाने के लिए अभी कोई ठोस जानकारी तो नहीं है लेकिन आधुनिक कुत्तों के आनुवंशिक विश्लेषण से पता चलता है कि कुत्तों की उत्पत्ति पूर्वी-एशिया में हुई थी जबकि कुछ अन्य आनुवंशिक और पुरातात्विक साक्ष्यों से पता चलता है कि इनकी उत्पत्ति साइबेरिया, मध्य-पूर्व, पश्चिमी युरोप या एकाधिक क्षेत्रों में हुई थी।

नए अध्ययन में फ्रांसिस क्रिक इंस्टीट्यूट के पोंटस स्कोगलुंड और 16 देशों के विभिन्न सहयोगियों ने कुछ अलग तरीका अपनाया। उन्होंने पालतूकरण के शुरुआती समय के दौरान भेड़िया वंश का एक विशाल नक्शा तैयार किया। 81 शोधकर्ताओं ने इस विषय से सम्बंधित सूचनाओं को जमा किया और 66 प्राचीन भेड़ियों के जीनोम को अनुक्रमित किया। इसके अलावा पूर्व में प्रकाशित युरोप, साइबेरिया और उत्तरी अमेरिका के स्थलों से प्राप्त डैटा को भी शामिल किया। इन जीवों का काल लगभग 1 लाख वर्षों में फैला था। फिर टीम ने 72 प्राचीन जीनोम की तुलना एक कंप्यूटर सॉफ्टवेयर की मदद से करके एक भेड़िया वंश वृक्ष तैयार किया।

स्कोगलुंड के अनुसार इस अध्ययन से एक बात यह स्पष्ट हुई कि भेड़ियों की ये दूर-दूर की आबादियां आपस में किस कदर जुड़ी हुई थीं। पिछले हज़ारों वर्षों से एक-दूसरे से दूर रहने वाले भेड़ियों के बीच हालिया पूर्वज साझा हैं। इससे यह पता चलता है कि ये जीव भटकते रहते थे और समय-समय पर परस्पर संतानोत्पत्ति भी करते थे।

प्राचीन भेड़ियों के जीनोम की तुलना आधुनिक और प्राचीन कुत्तों के साथ करने पर शोधकर्ताओं का निष्कर्ष है कि कुत्ते युरोप के प्राचीन भेड़ियों की तुलना में पूर्वी एशिया के प्राचीन भेड़ियों से अधिक निकटता से सम्बंधित हैं। इससे लगता है कि कुत्तों का मूल प्रदेश पूर्वी युरेशिया था और पश्चिमी युरेशिया का दावा रद्द हो जाता है। लेकिन कोई भी प्राचीन भेड़िया कुत्तों का निकटतम पूर्वज साबित नहीं हुआ जिसका मतलब है कि कुत्तों के पालतूकरण का वास्तविक क्षेत्र अब भी एक रहस्य बना हुआ है।

एक विचित्र बात यह है कि युरोप के प्राचीन भेड़ियों और पश्चिमी युरेशिया और अफ्रीका के आधुनिक कुत्तों के बीच कुछ जीन साझा हैं। इससे लगता है कि युरोपीय भेड़िए या तो कुत्तों की पश्चिमी आबादी के संपर्क में रहे होंगे या इन्हें अलग से पालतू बनाया गया होगा।

प्राचीन भेड़ियों के जीनोम से यह भी देखने को मिलता है कि लगभग 30,000 पीढ़ियों के दौरान इन प्रजातियों में कौन से जीन्स आगे बढ़ते रहे। चेहरे और खोपड़ी के विकास से सम्बंधित जीन्स लगभग 40,000 वर्ष पहले से भेड़ियों में फैलता रहा था। शुरुआत में यह एक बिरला जीन था लेकिन 10,000 वर्ष की अवधि के भीतर यह 100 प्रतिशत भेड़ियों में पाया जाने लगा। यह आज के आधुनिक भेड़ियों और कुत्तों में भी पाया जाता है। इसी तरह से 45,000 से 25,000 वर्ष पूर्व की अवधि में गंध सम्बंधी जीन्स के समूह का भी इसी तरह प्रसार हुआ था।

स्कोगलुंड का मानना है कि भेड़िये मज़बूत जबड़ों और अधिक संवेदनशील नाक के विकास के साथ अनुकूलित हुए जिसने उन्हें हिमयुग की कठोर परिस्थितियों में जीवित रहने में मदद की होगी। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit :

https://www.science.org/do/10.1126/science.add7199/abs/_20220629_on_wolvesdogs_istock-596091038.jpg
https://www.science.org/do/10.1126/science.add7199/full/_20220629_on_wolvesdogs_skull.png