पेंग्विन के अंडों की कुल्फी क्यों नहीं बन जाती

एंपरर पेंग्विन एक मशहूर पक्षी है जो अंटार्कटिक के निहायत ठंडे परिवेश में पाया जाता है। और जैसे ठंडे वातावरण में रहने की सज़ा काफी न थी, एंपरर पेंग्विन को अपने अंडे जाड़े के मौसम में देने पड़ते हैं। ठंड इतनी कि अंडों की कुल्फी जम जाए। मगर जमती नहीं, और अब वैज्ञानिकों ने बताया है कि ये पक्षी अपने अंडों को कड़ाके की ठंड से कैसे बचा पाते हैं।

पहले तो यह देख लें कि इतनी कड़ाके की ठंड में अंडे देने की क्या मजबूरी है जबकि अन्य पेंग्विन्स ऐसे मौसम में अंडे नहीं देते हैं। होता यह है कि जब ढेर सारे चूज़े अंडे फोड़कर निकलते हैं तो उन्हें ढेर सारे भोजन की भी ज़रूरत होती है। इतना भोजन तो वसंत में ही उपलब्ध होता है जब समुद्र पर जमा बर्फ तटों के आसपास पिघलने लगता है। यदि चूज़े वसंत में निकलना है तो अंडे जाड़ों में ही देने होंगे।

पेंग्विन हज़ारों की बस्ती में अंडे देते हैं। हरेक मादा एक अंडा देती है और फिर वह कई महीनों तक भोजन की तलाश में समुद्र की ओर निकल जाती हैं। अंडों की देखभाल का काम नर पेंग्विन्स करते हैं। ऋणात्मक तापमान में अंडों को संभालने के लिए नर पेंग्विन वास्तव में गर्मी के रुाोत में तबदील हो गए हैं। अन्य पक्षियों के समान पेंग्विन का शरीर भी पिच्छों से ढंका होता है। ये पिच्छ ऊष्मा के कुचालक होते हैं और उनके शरीर को वातावरण की ठंड/गर्मी से अलग रखते हैं। एंपरर पेंग्विन के पेट का एक हिस्सा होता है जो पिच्छों से ढंका नहीं होता। इसे शिशु थैली कहते हैं। पेंग्विन अंडे को अपने दोनों पंजों पर टिका कर इसी थैली से सटाकर रखते हैं और पेट के पिच्छों से उसे ढंक लेते हैं। इस प्रकार से अंडा वातावरण की अतियों से महफूज़ रहता है। और पिता के शरीर की गर्मी उसे मिलती रहती है।

पिता पेंग्विन एक काम और करते हैं। वे अपने शरीर की गर्मी को बचाने के लिए बर्फ से अपना संपर्क कम से कम कर देते हैं। इसके लिए वे अपने पंजों को ऊपर उठा लेते हैं और ऐड़ी के बल ज़मीन (यानी बर्फ) पर बैठते हैं तथा संतुलन बनाने के लिए अपनी पूंछ के सिरे की मदद लेते हैं। और इस पोज़ीशन में वे महीनों तक बैठे रहते हैं। इसके अलावा, ये नर पेंग्विन एक काम और करते हैं। वे बड़े-बड़े झुंड में सटकर बैठते हैं ताकि ऊष्मा की हानि कम से कम हो। जहां पेंग्विन के ऐसे जत्थे बैठते हैं वहां का तापमान आसपास के मुकाबले कई डिग्री अधिक होता है।

इन सब तरीकों के मिले-जुले इस्तेमाल की बदौलत ही पेंग्विन अपने अंडों को सुरक्षित रखते हुए सेते हैं और अगली पीढ़ी को दुनिया में आने का मौका देते हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit :   https://ocean.si.edu/sites/default/files/styles/photo_full/public/12607487274_2a5e7a050a_o.jpg?itok=Dy6BAu80

बिल्ली की सफाई का रहस्य – अरविंद गुप्ते

बिल्ली परिवार में घरेलू बिल्ली से ले कर बाघ, तेंदुए और सिंह जैसे जंतु शामिल हैं। ये सभी जंतु अपने शरीर को लगातार चाट कर साफ रखते हैं। इस प्रक्रिया के सबसे विस्तृत अध्ययन घरेलू बिल्ली पर किए गए हैं। बिल्ली एक दिन में औसतन 10 घंटे तक जागी रहती है और इस समय का लगभग एक-चौथाई भाग वह अपने शरीर को चाटने में गुज़ार देती है। चाटने की इस प्रक्रिया से उसके शरीर से पिस्सू जैसे परजीवी, धूल के कण, रक्त के थक्के आदि हट जाते हैं। इसके अलावा, लार में कुछ एंटीबायोटिक गुण होते हैं जिनके कारण घाव जल्दी भर जाते हैं।

यह जानकारी तो थी कि बिल्ली की जीभ पर नुकीले उभार होते हैं जिनकी नोकें पीछे की ओर मुड़ी होती हैं। किंतु ये उभार किस प्रकार काम करते हैं इसकी ठीक-ठीक जानकारी नहीं थी। अमेरिका के एटलांटा स्थित जॉर्जिया इंस्टीट्यूट ऑफ टेक्नॉलॉजी में कार्यरत दो इंजीनियर्स डेविड हू और एलेक्सिस नोएल ने बिल्ली परिवार की छह प्रजातियों की जीभों का अध्ययन करके यह पता लगाने का प्रयास किया कि चाटने की प्रक्रिया में क्या होता है। उन्होंने मृत जंतुओं की जीभें प्राप्त कीं और उनका सीटी स्कैन से अध्ययन किया। घरेलू बिल्ली द्वारा खुद को चाटे जाने की प्रक्रिया का अध्ययन उन्होंने उच्च गति के कैमरों की सहायता से किया। उन्होंने पाया कि इन सभी जंतुओं की जीभ पर उपस्थित उभार ठोस नहीं होते (जैसा माना जाता था), किंतु उनमें एक खांच होती है जिसके कारण उभार का आकार चम्मच के समान हो जाता है। किंतु यह चम्मच इस बात में अनोखा है कि वह केशिका क्रिया से मुंह में उपस्थित लार को अपने अंदर खींच लेती है और इस प्रकार सफाई के लिए अधिक लार प्राप्त हो जाती है जो बिल्ली के बालों के नरम स्तर तक पहुंच जाती है। बिल्ली की त्वचा पर दो प्रकार के बाल होते हैं – त्वचा के ठीक ऊपर नरम बालों का एक स्तर होता है और इसके बाहर कड़े बालों का स्तर। चम्मच के समान आकार का एक और फायदा यह होता है कि बाहर आते समय उसमें गंदगी आसानी से भर जाती है और उसे बाहर निकालना आसान होता है। इस प्रकार, जीभ के उभार लार को बालों के अंदर तक पहुंचाने और गंदगी को बाहर निकालने का दोहरा काम सफलतापूर्वक करते हैं।

त्वचा के ऊपर लार के पहुंचने का एक और फायदा यह होता है कि लार के भाप बन कर उड़ जाने से बिल्ली की त्वचा का तापमान काफी कम हो जाता है और उसे गर्मी से राहत मिलती है। हू और नोएल का अनुमान है कि बिल्ली की त्वचा और बालों के बाहरी आवरण के बीच 17 डिग्री सेल्सियस तक का अंतर हो सकता है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit :   https://d17fnq9dkz9hgj.cloudfront.net/uploads/2012/11/153741287-cats-meticulous-nature-632×475.jpg

कीटों की घटती आबादी और प्रकृति पर संकट

हाल ही में प्रकाशित एक रिपोर्ट के मुताबिक कीटों की जनसंख्या में तेज़ी से गिरावट आ रही है और यह गिरावट किसी भी इकोसिस्टम के लिए खतरे की चेतावनी है। सिडनी विश्वविद्यालय के फ्रांसिस्को सांचेज़-बायो और बेजिंग स्थित चायना एकडमी ऑफ एग्रिकल्चरल साइन्सेज़ के क्रिस वायचुइस द्वारा बॉयोलॉजिकल कंज़र्वेशन पत्रिका में प्रकाशित इस रिपोर्ट के मुताबिक 40 प्रतिशत से ज़्यादा कीटों की संख्या घट रही है और एक-तिहाई कीट तो विलुप्ति की कगार पर पहुंच चुके हैं। कीट का कुल द्रव्यमान सालाना 2.5 प्रतिशत की दर से कम हो रहा है, जिसका मतलब है कि एक सदी में ये गायब हो जाएंगे।

रिपोर्ट में तो यहां तक कहा गया है कि धरती छठे व्यापक विलुप्तिकरण की दहलीज़ पर खड़ी है। कीट पारिस्थितिक तंत्रों के सुचारु कामकाज के लिए अनिवार्य हैं। वे पक्षियों, सरिसृपों तथा उभयचर जीवों का भोजन हैं। इस भोजन के अभाव में ये प्राणि जीवित नहीं रह पाएंगे। कीट वनस्पतियों के लिए परागण की महत्वपूर्ण भूमिका भी निभाते हैं। इसके अलावा वे पोषक तत्वों का पुनर्चक्रण भी करते हैं।

शोधकर्ताओं का कहना है कि कीटों की आबादी में गिरावट का सबसे बड़ा कारण सघन खेती है। इसमें खेतों के आसपास से सारे पेड़-पौधे साफ कर दिए जाते हैं और फिर नंगे खेतों पर उर्वरकों और कीटनाशकों का बेतहाशा इस्तेमाल किया जाता है। आबादी में गिरावट का दूसरा प्रमुख कारण जलवायु परिवर्तन है। कई कीट तेज़ी से बदलती जलवायु के साथ अनुकूलित नहीं हो पा रहे हैं।

सांचेज़-बायो का कहना है कि पिछले 25-30 वर्षों में कीटों के कुल द्रव्यमान में से 80 प्रतिशत गायब हो चुका है।

इस रिपोर्ट को तैयार करने में कीटों में गिरावट के 73 अलग-अलग अध्ययनों का विश्लेषण किया गया। तितलियां और पतंगे सर्वाधिक प्रभावित हुए हैं। जैसे, 2000 से 2009 के बीच इंगलैंड में तितली की एक प्रजाति की संख्या में 58 प्रतिशत की कमी आई है। इसी प्रकार से मधुमक्खियों की संख्या में ज़बरदस्त कमी देखी गई है। ओक्लाहामा (यूएस) में 1949 में बंबलबी की जितनी प्रजातियां थीं, उनमें से 2013 में मात्र आधी बची थीं। 1947 में यूएस में मधुमक्खियों के 60 लाख छत्ते थे और उनमें से 35 लाख खत्म हो चुके हैं।

वैसे रिपोर्ट को तैयार करने में जिन अध्ययनों का विश्लेषण किया गया वे ज़्यादातर पश्चिमी युरोप और यूएस से सम्बंधित हैं और कुछ अध्ययन ऑस्ट्रेलिया से चीन तथा ब्रााज़ील से दक्षिण अफ्रीका के बीच के भी हैं। मगर शोधकर्ताओं का मत है कि अन्यत्र भी स्थिति बेहतर नहीं होगी। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit :  https://www.theguardian.com/environment/2019/feb/10/plummeting-insect-numbers-threaten-collapse-of-nature#img-1

पंख के जीवाश्म से डायनासौर की उड़ान पता चला

वैज्ञानिक काफी लंबे समय से यह तो जानते हैं कि कई शुरुआती डायनासौर, जो आज के पक्षियों के पूर्वज हैं, पंखों से ढंके हुए थे। पंखों का यह आवरण गर्मी प्रदान करने के अलावा प्रजनन साथियों को आकर्षित करने में भी उपयोगी था। लेकिन अभी तक यह नहीं पता था कि कब और कैसे इन पंखों का इस्तेमाल उड़ने के लिए किया जाने लगा।

अब पंख वाले डायनासौर के पंख के जीवाश्म के आणविक विश्लेषण से पता चला है कि पंख में प्रयुक्त प्रमुख प्रोटीन किस तरह समय के साथ हल्के और अधिक लचीले हुए जिसके चलते डायनासौर उड़ने में सक्षम हुए और अंतत: पक्षियों में विकसित हुए।

ज़मीन पर चलने वाले सभी रीढ़धारी जीवों में किरेटिन नाम का एक प्रोटीन होता है जो नाखूनों से लेकर चोंच, पंख, शल्क वगैरह बनाता है। मनुष्यों और अन्य स्तनधारियों में, अल्फा किरेटिन 10 नैनोमीटर चौड़ा तंतु बनाता है जिससे बाल, त्वचा और नाखून बनते हैं। मगरमच्छों, कछुओं, छिपकलियों और पक्षियों में बीटा किरेटिन और भी पतला व अधिक कठोर तंतु बनाता है जिससे पंजे, चोंच और पंख बनते हैं।

वैज्ञानिकों ने पिछले एक दशक में दर्जनों जीवित पक्षियों, मगरमच्छों, कछुओं और अन्य रेंगने वाले जीवों के जीनोम की मदद से समय के साथ उनके  बीटा किरेटिन में बदलाव के आधार पर एक वंशवृक्ष तैयार किया है। उनके अनुसार आधुनिक पक्षियों ने अधिकांश अल्फा किरेटिन तो गंवा दिया, लेकिन उनके पंखों में बीटा किरेटिन अधिक लचीला हो गया। इनमें ग्लाइसिन और टायरोसिन अमीनो एसिड्स की एक लड़ी का अभाव होता है जो पंजे और चोंच को कठोर बनाती है। इससे पता चला कि उड़ान के लिए ये दोनों परिवर्तन आवश्यक हैं।

इन दोनों परिवर्तनों को एक साथ देखने के लिए शोधकर्ताओं ने चीन और मंगोलिया के असाधारण जीवाश्मों में अल्फा और बीटा किरेटिन का विश्लेषण किया। पुराजीव वैज्ञानिक पान यानहोंग और मैरी श्वाइट्ज़र ने 16 से 7.5 करोड़ वर्ष पूर्व की पांच प्रजातियों किरेटिन का विश्लेषण किया।

उन्होंने प्रोसीडिंग्स ऑफ दी नेशनल एकेडमी ऑफ साइंसेज़ में बताया है कि 16 करोड़ साल पहले के एक कौए के आकार के एनचीओर्निस डायनासौर के पंखों में कुछ मात्रा में आधुनिक पक्षियों के समान अभावग्रस्त बीटा किरेटिन पाया गया। लेकिन सबसे प्राचीन ज्ञात पक्षी आर्कियोप्टेरिक्स से 10 करोड़ वर्ष पूर्व के डायनासौर में अधिक अल्फा किरेटिन पाया गया, जो आज के पक्षियों के पंखों में कमोबेश अनुपस्थित है।

इससे यह अनुमान लगाया जा सकता है कि एनचीओर्निस के पंख उड़ान भरने के लिए सक्षम तो नहीं थे लेकिन उड़ान की ओर विकास में एक मध्यवर्ती चरण को दर्शाते हैं।

इसी प्रकार 13 करोड़ वर्ष पुराने एक छोटे उड़ानहीन डायनासौर शुवुइया से प्राप्त पंखों से पता चलता है कि आधुनिक पक्षियों की तरह, इसमें अल्फा किरेटिन की कमी तो थी लेकिन एनचीओर्निस के विपरीत, इसके पंख अधिक कठोर बीटा किरेटिन से बने थे।

आधुनिक आनुवंशिक सबूतों के आधार पर यह कह पाना संभव है कि विकास के दौरान, कुछ डायनासौर के जीनोम में अल्फा किरेटिन जीन की कई प्रतिलिपियां बन गई। फिर इन ढेर सारी प्रतियों में काट-छांट के चलते ये बीटा किरेटिन के ग्लायसीन व टायरोसीन रहित लचीले किरेटिन का निर्माण करने लगे। इस दोहरे परिवर्तन ने डायनासौर को उड़ने में सक्षम बनाया और इसी के फलस्वरूप पक्षी विकसित हुए। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit :  https://www.sciencemag.org/sites/default/files/styles/inline__450w__no_aspect/public/feathers_16x9.jpg?itok=aWYEzdiZ

मधुमक्खियां जोड़-घटा भी सकती हैं

वैज्ञानिक यह तो पता कर चुके हैं कि मधुमक्खियां 4 तक गिन सकती हैं और शून्य को समझती हैं। लेकिन हाल ही में साइंस एडवांसेस पत्रिका में प्रकाशित अध्ययन बताता है कि मधुमक्खियां जोड़ना-घटाना भी कर सकती हैं। अंतर इतना है कि इसके लिए वे धन-ऋण के चिंहों की जगह अलग-अलग रंगों का उपयोग करती हैं।

जीव-जगत में गिनना या अलग-अलग मात्राओं की पहचान करना कोई अनसुनी बात नहीं है। ये क्षमता मेंढकों, मकड़ियों और यहां तक कि मछलियों में भी देखने को मिलती है। लेकिन प्रतीकों की मदद से समीकरण को हल कर पाने की क्षमता दुर्लभ है। अब तक ये क्षमता सिर्फ चिम्पैंज़ी और अफ्रिकन भूरे तोते में देखी गई है।

शोधकर्ता जानना चाहते थे कि मधुमक्खियों (Apis mellifera) का छोटा-सा दिमाग गिनने के अलावा और क्या-क्या कर सकता है। शोघकर्ताओं ने पहले तो मधुमक्खियों को नीले और पीले रंग का सम्बंध जोड़ने और घटाने की क्रिया से बनाने के लिए प्रशिक्षित किया। उन्होंने 14 मधुमक्खियों को Y-आकृति की भूलभुलैया में प्रवेश यानी Y-आकृति की निचली भुजा (जहां से दो में से एक रास्ते का चुनाव करना होता था) में रखा और वहां उन्हें नीले और पीले रंग की वस्तुएं दिखाई गर्इं। जब उन्हें नीले रंग की कुछ वस्तुएं दिखाई जातीं और मधुमक्खियां उस ओर जातीं जहां दिखाई गई वस्तु से एक अधिक वस्तु है तो उन्हें इनाम मिलता था। Y-आकार की दूसरी भुजा के अंत में एक कम वस्तु होती थी। पीले रंग की वस्तुएं दिखाने पर यदि मक्खियां एक कम वस्तु वाली भुजा की तरफ जातीं तो उन्हें इनाम मिलता था।

इसके बाद उन्हें जांचा गया। मधुमक्खियों ने 63-72 प्रतिशत मामलों में सही जवाब दिए। पीला रंग दिखाने पर उन्होंने एक वस्तु ‘घटाई’ या नीला रंग दिखाने पर एक वस्तु ‘जोड़ी’ तब माना गया कि उन्होंने सही जवाब दिया है। यह प्रयोग मात्र 14 मधुमक्खियों पर किया गया है किंतु शोधकर्ताओं का मत है कि मनुष्य की तुलना में बीस हज़ार गुना छोटे दिमाग के लिए यह एक बड़ी उपलब्धि है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit :   https://www.theguardian.com/environment/2019/feb/06/spelling-bees-no-but-they-can-do-arithmetic-say-researchers#img-1

कितने समय से पांडा सिर्फ बांस खाकर ज़िन्दा है

रीर पर बड़े-काले धब्बे वाले पांडा (Ailuropoda melanoleuca) चीन के बांस के जंगलों में रहते हैं और उनका भोजन सिर्फ बांस है। लेकिन सवाल यह है कि कब से पांडा ने सिर्फ बांस को अपना भोजन बना लिया। हमेशा से बांस पांडा का भोजन नहीं रहा है और ना ही पूर्व में उनका आवास स्थान बांस के जंगल था, उनमें काफी विविधता थी। पूर्व में हुए शोध के आधार पर वैज्ञानिकों का मानना था कि पांडा ने लाखों साल पहले ही बांस को अपना भोजन बना लिया था। लेकिन हाल का एक अध्ययन बताता है कि ऐसा नहीं है। करंट बायोलॉजी पत्रिका में प्रकाशित शोध के अनुसार पांडा ने लाखों साल पहले नहीं बल्कि कुछ हज़ार साल (5-7 हज़ार साल) पहले ही बांस को अपना एकमेव भोजन बनाया है।

पांडा के भोजन और आवास में परिवर्तन कब आए, यह जानने के लिए चाइनीज़ एकेडमी ऑफ साइंस के संरक्षण जीव विज्ञानी फुवेन वेई और उनके साथियों ने प्राचीन और आधुनिक पांडा की हड्डियों और दांतों में मौजूद स्थिर समस्थानिकों (तत्वों के ऐसे समस्थानिक जो समय के साथ क्षय नहीं होते) के अनुपात की तुलना की।

कोई भी जीव जो भोजन खाता है, उस भोजन की रासायनिक पहचान उसके शरीर में आ जाती है। वैज्ञानिक शरीर के अलग-अलग ऊतकों की जांच करके यह पता कर सकते हैं कि किसी जीव के जीवन काल के अलग-अलग समय पर उसका भोजन कैसा रहा होगा। हड्डियों में मौजूद समस्थानिकों की मदद से पता किया जा सकता है कि जीवन के अंतिम कुछ सालों में किसी जीव का भोजन कैसा रहा होगा। दांतों के नमूने से यह पता किया जा सकता है कि किसी जीव के शुरुआती जीवन में उसका भोजन कैसा रहा होगा।

शोधकर्ताओं की टीम ने तकरीबन 5000 साल पूर्व के पांडा जीवाश्म और आधुनिक मृत पांडा के दांतों और हड्डियों के समस्थानिकों की मात्रा तुलना की। अध्ययन में शोधकर्ताओं ने पाया कि पांडा के पूर्वजों का भोजन आधुनिक पांडा से बहुत अलग था और वे ऊष्ण कटिबंधीय जंगलों में रहते थे। हालांकि विश्लेषण में इस बात का पता नहीं चला है कि पांडा के पूर्वजों का भोजन क्या था।

पांडा के पूर्वज असल में खाते क्या थे, यह जानने के लिए यह पता करना होगा कि पांडा के पूर्वजों के पेट में क्या पहुंचता था। लेकिन यह पता करना आसान नहीं है। जीवाश्मों में उनका भोजन मिलना मुश्किल है। मगर इस तरह के अध्ययनों से इस बात के संकेत तो मिल ही सकते हैं कि क्यों पांडा सिर्फ बांस को ही अपना भोजन बनाने को मजबूर हुए, और उनका आवास स्थान इतना सीमित कैसे हो गया। यदि इन कारणों का पता लग जाए तो हम वर्तमान में बचे हुए पांडा का संरक्षण कर सकते हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit :   https://i.dailymail.co.uk/i/pix/2012/03/19/article-2117067-123C6841000005DC-670_468x306.jpg

पांच सौ साल चलेगा यह प्रयोग!

न 2014 में एडिनबरा विश्वविद्यालय के सूक्ष्मजीव वैज्ञानिक चार्ल्स कॉकेल और उनके कुछ साथियों ने मिलकर एक प्रयोग इस उम्मीद के साथ शुरू किया था कि वह 2514 तक (यानी 500 साल तक) चलेगा। वैसे तो लंबे-लंबे वैज्ञानिक प्रयोगों का लंबा इतिहास रहा है मगर कॉकेल और साथियों का यह प्रयोग अत्यंत महत्वाकांक्षी है।

प्रयोग वैसे तो काफी आसान है। सादे कांच के 800 कैप्सूल्स हैं और प्रत्येक में या तो क्रूकॉक्सीडोप्सिस या बैसिलस सब्टिलिस नामक बैक्टीरिया के नमूने रखे गए हैं। कांच के इन कैप्सूल्स को अच्छी तरह सील कर दिया गया है। इनमें से आधे कैप्सूल्स पर सीसे का आवरण है ताकि ये डीएनए को क्षति पहुंचाने वाले विकिरण से सुरक्षित रहें। कैप्सूल्स का एक पूरा सेट लंदन प्राकृतिक इतिहास संग्रहालय में बैक-अप के तौर पर रखा गया है।

प्रयोग का मकसद यह देखना है कि बैक्टीरिया शुष्क परिस्थिति में कितने समय तक जीवनक्षम बने रहते हैं। प्रयोग की शुरुआत एक आकस्मिक अवलोकन के आधार पर हुई थी। कॉकेल ने एक तश्तरी में बैक्टीरिया क्रूकॉक्सीडॉप्सिस रखा था और फिर वे उसे भूल गए थे। 10 वर्षों बाद जब उन्होंने उस तश्तरी पर ध्यान दिया तो पता चला कि बैक्टीरिया जीवनक्षम थे। इससे पहले भी कुछ वैज्ञानिकों ने मांस के 118 वर्ष पुराने डिब्बों में से सही सलामत बैक्टीरिया प्राप्त किए थे और एक शोध का परिणाम था कि एंबर और लवण के क्रिस्टल में कुछ बैक्टीरिया लाखों वर्षों बाद भी जीवनक्षम पाए गए थे, हालांकि इसे लेकर विवाद है।

उक्त अवलोकन ने कॉकेल के मन में यह जिज्ञासा पैदा कर दी कि आखिर बैक्टीरिया कितने वर्षों तक जीवनक्षम बने रहते हैं। इसी जिज्ञासा से प्रेरित होकर उन्होंने इस आधी सहस्त्राब्दी के प्रयोग की कल्पना की। ज़ाहिर है, यह प्रयोग पूरा होने से बहुत पहले मूल शोधकर्ता तो सिधार चुके होंगे। इसलिए उन्होंने हर पच्चीस वर्षों में इसके अवलोकन की व्यवस्था की है। व्यवस्था यह है कि पहले 24 वर्षों तक हर दूसरे साल और उसके बाद 475 वर्षों तक हर पच्चीस साल में एक बार कुछ वैज्ञानिक विश्वविद्यालय आएंगे और दोनों तरह के एक-एक कैप्सूल को खोलेंगे और उसमें रखे गए बैक्टीरिया को पनपाने की कोशिश करेंगे। उन्होंने इसके लिए निर्देश लिखकर एक यूएसबी स्टिक में डालकर रख दिए हैं। मगर टेक्नॉलॉजी की प्रगति को देखते हुए उन्हें लगा कि शायद यूएसबी स्टिक जल्दी ही पुरानी पड़ जाएगी। इसलिए कागज़ पर भी निर्देश रख छोड़े हैं, और एक निर्देश यह दिया है कि जो भी वैज्ञानिक यह काम करे वह इन निर्देशों की एक नवीन प्रतिलिपि बनाकर रख दे, क्योंकि 500 सालों में कागज़ की हालत पता नहीं क्या हो जाएगी।

शोधकर्ताओं ने यह भी विचार किया है कि शायद उस समय तक विश्वविद्यालय जैसी संस्था रहे ना रहे, वैज्ञानिक कार्य के लिए फंडिंग उपलब्ध रहे ना रहे। तो उन्होंने इस प्रयोग को जारी रखने के लिए एक ट्रस्ट बना दिया है। हम-आप तो इस प्रयोग के परिणाम जानने को यहां नहीं रहेंगे मगर उम्मीद की जानी चाहिए कि यह प्रयोग नियमित रूप से पूरा होगा और कुछ रोचक निष्कर्ष (लगभग) 20 पीढ़ी बाद के वैज्ञानिकों को मिलेंगे। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit :  https://uploads.neatorama.com/images/posts/525/104/104525/1548615941-0.jpg

समुद्र के पेंदे से 200 फीट नीचे सूक्ष्मजीव पाए गए

जापान के समुद्र के पेंदे में सैकड़ों फुट नीचे कुछ सूक्ष्मजीव मिले हैं। समुद्र में इतनी गहराई पर तापमान शून्य से कई डिग्री नीचे होता है और दबाव हज़ारों वायुमंडल के बराबर होता है। इतना कम तापमान और दबाव किसी भी जीवन की संभावना को खारिज कर देता है किंतु हाल ही में जापान के मैजी विश्वविद्यालय के ग्लेन स्नाइडर ने इसी गहराई में ये सूक्ष्मजीव प्राप्त किए हैं।

स्नाइडर और उनके साथी जापान के पश्चिमी तट से काफी अंदर गैस हायड्रेट की तलाश कर रहे थे। गैस हायड्रेट गैस और पानी से मिलकर बने रवेदार ठोस होते हैं। यह मिश्रण समुद्र की गहराई में मौजूद अत्यंत कम तापमान और अत्यंत उच्च दबाव पर ठोस बन जाता है। उन्होंने पाया कि बड़ेबड़े (5-5 मीटर चौड़े) गैस हायड्रेट में अंदर डोलोमाइट के रवे फंसे हुए हैं। डोलोमाइट के ये कण बहुत छोटेछोटे थे (व्यास मात्र 30 माइक्रॉन)। और इन डोलोमाइट रवों के अंदर एक और गहरे रंग का बिंदु था। इस बिंदु ने शोधकर्ताओं की जिज्ञासा बढ़ा दी।

जब रासायनिक विधि से हायड्रेट को अलग कर दिया गया तो शोधकर्ताओं को डोलोमाइट का अवशेष मिला। उन्होंने अमेरिकन जियोफिज़िकल युनियन के सम्मेलन में बताया कि जब उक्त सूक्ष्म धब्बों का फ्लोरेसेंट रंजक से रंगकर अवलोकन किया तो पता चला कि इनमें जेनेटिक पदार्थ उपस्थित है। यह जेनेटिक पदार्थ सूक्ष्मजीवों का द्योतक है।

यह तो पहले से पता है कि सूक्ष्मजीव हायड्रेट्स के आसपास रहते हैं किंतु यह पूरी तरह अनपेक्षित था कि ये हायड्रेड्स के अंदर डोलोमाइट में निवास करते होंगे। अवलोकन से यह तो पता नहीं चला है कि ये सूक्ष्मजीव जीवित हैं या मृत किंतु इनका वहां पाया जाना ही आश्चर्य की बात है। चूंकि ये हायड्रेट्स के अंदर के अनछुए वातावरण में मिले हैं इसलिए यह निश्चित है कि ये वहीं के वासी होंगे; ये वहां किसी इंसानी क्रियाकलाप की वजह से नहीं पहुंचे होंगे।

वैज्ञानिकों का विचार है कि मंगल ग्रह पर भी ऐसे हायड्रेट्स पाए जाते हैं और काफी संभावना बनती है कि उनके अंदर ऐसे सूक्ष्मजीवों का घर हो सकता है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.livescience.com/64532-microbes-inside-gas-hydrate-crystals.html

प्रयोगशाला में अनेक सिर वाला जीव बनाया गया

नेक सिरों वाला एक जीव प्रयोगशाला में बनाया गया है। इसे दशानन की तर्ज़ पर अनेकानन कह सकते हैं। दरअसल हायड्रा एक जलीय जीव है जिसमें पुनर्जनन का अनोखा गुण होता है। इसके शरीर का छोटा से टुकड़ा भी बच जाए तो यह पूरा शरीर बनाने की क्षमता रखता है। वैसे हायड्रा का शरीर काफी सरल होता है एक बेलनाकार धड़ और उस पर स्पर्शकों से घिरा सिर।

शोधकर्ता इसकी जेनेटिक संरचना में एक फेरबदल करके ऐसा हायड्रा बना सकते हैं जिसके पूरे शरीर पर सिर ही सिर होंगे। यूनानी दंतकथा में ऐसे अनेकानन हायड्रा का ज़िक्र भी आता है। मगर अब समझ में आया है कि प्राकृतिक रूप से ऐसा क्यों नहीं होता। क्या चीज़ है जो ऐसे अनेक सिर वाले हायड्रा को बनने से रोकती है। यह समझ कैंसर अनुसंधान में काफी उपयोगी साबित हो सकती है।

हायड्रा सरल जीव अवश्य है किंतु शरीर को फिर से विकसित कर लेना कोई हंसीखेल नहीं है। हर बार पुनर्जनन के दौरान हायड्रा को पूरी प्रक्रिया को नियंत्रित करना पड़ता है ताकि हर बार एक ही सिर बने। शोधकर्ता यह तो पहले से जानते थे कि एक जीन (Wnt3) होता है जो सिर के विकास का संदेश देता है। उन्हें यह भी पता था कि इस जीन के लिए कोई आणविक अंकुश भी होना चाहिए अन्यथा हायड्रा के पूरे शरीर पर सिर उगेंगे। शोधकर्ताओं को यह भी पता था कि बीटाकैटिनीन/टीसीएफ नामक एक ग्राही और जीन एक्टिवेटर होता है जो सिर के विकास की प्रक्रिया को शुरू करवाता है।

मगर उन्हें यह पता नहीं था कि इस प्रक्रिया को बंद करने वाला स्विच कौनसा है। जेनेवा विश्वविद्यालय के जेनेटिक्स व जैव विकास की प्रोफेसर ब्रिगिटे गैलियॉट और उनके साथी इसी स्विच की खोज में थे। पहले उन्होंने हायड्रा के निकट सम्बंधी प्लेनेरियन्स (चपटा कृमि) पर ध्यान दिया। ये कृमि भी पुनर्जनन करते हैं। उन्होंने पाया कि 440 जीन्स ऐसे हैं जो बीटाकैटिनीन/टीसीएफ से संकेत मिलने पर अवरुद्ध हो जाते हैं। इसके आधार पर उन्होंने हायड्रा में छानबीन की। देखा गया कि इनमें से 124 जीन्स हायड्रा में भी पाए जाते हैं।

इन 124 में से भी उन्हें पांच जीन्स ऐसे मिले जो हायड्रा के बेलनाकार शरीर के ऊपरी हिस्से में सक्रिय होते हैं और निचले हिस्से में सबसे कम सक्रिय होते हैं। इसका मतलब है कि ये सिर के विकास से सम्बंधित हैं। अब गैलियॉट और उनके साथियों ने यह देखने की कोशिश की कि कौनसे जीन्स पुनर्जनन की प्रक्रिया के दौरान अधिक सक्रिय होते हैं। इस तरह से तीन जीन्स बचे: Wnt3, Wnt5और Sp5

इनमें से पहले दो जीन्स (Wnt3, Wnt5) के बारे में तो पता था कि ये सिर के विकास की प्रक्रिया को शुरू करवाते हैं। इसलिए उन्होंने तीसरे जीन (Sp5) पर ध्यान केंद्रित किया। रोचक बात यह पता चली कि बीटाकैटिनीन/टीसीएफ से प्राप्त संकेत से Sp5 की सक्रियता बढ़ती है किंतु वह Wnt3 की क्रिया को दबाकर बीटाकैटिनीन/टीसीएफ संकेत को बंद कर देता है। यानी यही (Sp5) वह अंकुश है जो सिर के विकास की प्रक्रिया को रोकता है। इसकी जांच के लिए उन्होंने ऐसे हायड्रा तैयार किए जिनमें Sp5 अभिव्यक्त नहीं होता। और इन हायड्रा ने पुनर्जनन में कई सिरों का विकास किया। कुल मिलाकर पूरी प्रक्रिया अभिव्यक्ति और उसके दमन के नाज़ुक संतुलन पर टिकी है। गौरतलब बात है कि Wnt3 मात्र हायड्रा या चपटे कृमियों तक सीमित नहीं है। यह इंसानों में भी पाया जाता है और यहां भी यह विकास में भूमिका निभाता है। इसके अलावा यही जीन कैंसर के विकास में भी भूमिका निभाता (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit :  https://www.livescience.com/64536-hydra-with-multiple-heads-created.html

मानव शिशु चिम्पैंज़ी-शब्दकोश का उपयोग करते हैं – डॉ. डी. बालसुब्रमण्यन

डीएनए आधारित आनुवंशिक विश्लेषण से इस बात की तो पुष्टि हो ही चुकी है कि मनुष्य वानरों के वंशज हैं। प्रजातियों की उत्पत्ति और उनके विकास के बारे में आज से लगभग 160 साल पहले चार्ल्स डार्विन ने बताया था। इस बात को आज सभी स्वीकार करते हैं, हालांकि धार्मिक आधार पर डार्विन को नकारने वालों का एक समूह मौजूद है। इस सिद्धांत को लेकर सन 1860 में एक बड़ी बहस चली थी जिसे ग्रेट ऑक्सफोर्ड बहसके नाम से याद किया जाता है। उस समय डारविन बीमार थे और डॉ. थॉमस हक्सले डार्विन के सिद्धांत का बचाव कर रहे थे। ऑक्सफोर्ड के बिशप विल्बरफोर्स ने हक्सले पर तंज कसते हुए पूछा था कि तुम वानर के वंशज होने का दावा दादा की ओर से जोड़कर कर रहे हो या दादी की ओर से? हक्सले ने शांतिपूर्वक इसका जवाब दिया था: किसी इंसान के लिए इस बात पर शर्म करने का कोई कारण नहीं है कि उसके दादा वानर थे। यदि मुझे अपने किसी पूर्वज को याद करके शर्मिंदगी महसूस होगी तो वह एक मनुष्य होगा जो विशाल और बहुमखी प्रतिभावान है, जो अपने काम के दायरे में सफलता से संतुष्ट नहीं है, और उन वैज्ञानिक सवालों में टांग अड़ाता है जिनके बारे में उसे कुछ पता नहीं है; उद्देश्य सिर्फ यह होता है कि लक्ष्यहीन लफ्फाज़ी से उन सवालों को दबा सके और अपने शब्दजाल और चतुराई से धार्मिक पूर्वाग्रहों का आव्हान करके श्रोताओं का ध्यान वास्तविक मुद्दे से भटका सके।

हक्सले द्वारा दिया गया यह जवाब यहां सिर्फ इसलिए नहीं दोहराया गया है क्योंकि यह हाजि़रजवाबी, बुद्धिमतापूर्ण, धैर्यपूर्वक अच्छे शब्दों में दिया गया था बल्कि इसलिए दोहराया गया है क्योंकि यह आज भी उतना ही प्रासंगिक है।

इशारों की विरासत

मनुष्यों को वानरों (गोरिल्ला, ओरांगुटान, चिम्पैंज़ी, बोनोबो) से विरासत में ना सिर्फ आनुवंशिक और जैव-रासायनिक गुण मिले हैं बल्कि संवाद के शारीरिक संकेत (इशारे) भी मिले हैं। यह बात एक हालिया शोध पत्र में प्रस्तुत हुई है। वी. क्रसकेन और साथियों का यह शोध पत्र एनिमल कॉग्नीशन नामक पत्रिका के सितम्बर 2018 के अंक में प्रकाशित हुआ है (यह नेट पर मुफ्त में उपलब्ध है, लिंक देखे https://doi.org/10.1007/&10071-08-1213) इस शोध पत्र में लेखक बताते हैं कि मानव और गैर-मानव वानरों की सभी प्रजातियों के पूर्वज संवाद के लिए अलग-अलग तरह के संकेतों का उपयोग करते थे: जैसे उच्चारण, शारीरिक संकेत, चेहरे के भाव, शरीर की हरकतें और यहां तक कि चेहरे की रंगत (गुलाबी होना, लाल-पीला होना) या गंध भी आपस में संदेश पहुंचाने का काम करते थे। अलबत्ता, मनुष्यों की भाषा (मौखिक या सांकेतिक) संवाद का एक सर्वथा जुदा तंत्र लगती है।इसके विपरीत हमारे वानर पूर्वजों के पास मौखिक भाषा नहीं थी, मगर आपस में संवाद के लिए संकेतों के रूप में उनके पास 60 से भी ज़्यादा इशारे थे, जिनका उपयोग वे रोज़मर्रा के लक्ष्य हासिल करने हेतु करते थे। इनमें काफी लचीलापन और सोद्देश्यता दिखाई पड़ती है। और तो और, विभिन्न वानर प्रजातियों में संवाद के इशारे एक जैसे पाए गए हैं। इस बात से यह निष्कर्ष निकलता है कि ये 60 से भी अधिक सांकेतिक चेष्टाएं, जिनका उपयोग पूर्वज वानर आपस में संवाद के लिए करते थे, संवाद की गैर-मानव प्रणाली है। ऐसा भी कहा जाता है कि इंसानों की भाषा इशारों के इसी खज़ाने से विकसित हुई है। इस संदर्भ में दी मैक्स प्लांक इंस्टीट्यूट ऑफ इवॉल्यूशनरी एन्थ्रोपोलॉजी के प्रोफेसर माइकल टॉमसेलो की एक किताब प्रकाशित हुई थी जिसका शीर्षक है ओरिजिन ऑफ ह्यूमन कम्यूनिकेशन । डॉ. ह्यूवेस और उनके साथियों ने 1973 में करंट एंथ्रोपोलॉजी में एक पेपर प्रकाशित किया था: प्राइमेट कम्यूनिकेशन एंड दी जेश्चरल ओरिजिन ऑफ लेन्गवेज (प्रायमेट संप्रेषण और भाषा की शारीरिक संकेत-आधारित उत्पत्ति)। और ज़्यादा हाल में होबैटर और बायर्न ने करंट बायोलॉजी में चिम्पैंज़ियों के हाव-भाव-इशारों का एक शब्दकोश प्रकाशित किया है।

मानव शिशु

अब मानव शिशुओं की बात करते हैं। हमारे शिशुओं को बोलना सीखने में वक्त लगता है। औसत मानव शिशु एक या दो वर्ष की उम्र तक वयस्कों के साथ और आपस में संप्रेषण के लिए विभिन्न हाव-भाव (शारीरिक संकेतों) का उपयोग करते हैं। डॉ. कैथरीन होबैटर के नेतृत्व में स्कॉटलैंड, युगांडा, जर्मनी और स्वीटज़रलैंड के एक समूह द्वारा किए गए एक तुलनात्मक अध्ययन में यह देखने की कोशिश की गई कि इस दौरान (बोलना सीखने से पहले) शिशु ऐसे कितने और कौन-से शारीरिक संकेतों का उपयोग करता है और इनमें से कितने हमारे पूर्वजों से मेल खाते हैं। यह अध्ययन एनिमल कॉग्नीशन पत्रिका  के एक विशेष अंक में प्रकाशित हुआ था जिसका विषय था इवॉल्विंग दी स्टडी ऑफ जेश्चर

शोधकर्ताओं ने युगांडा के 315 से 421 दिन उम्र के 7 शिशुओं और जर्मनी के 343 से 642 दिन उम्र के 6 शिशुओं के शारीरिक संकेतों को रिकॉर्ड किया। सारे शिशु उनके सामान्य परिवेश में ही रखे गए थे। देखा यह गया कि शिशु बात करने के लिए कितने शारीरिक इशारों का उपयोग करते हैं। उन्होंने पाया कि मानव शिशु 52 अलग-अलग इशारों का उपयोग करते हैं। इसके बाद उन्होंने 12 महीने से लेकर 51 वर्ष उम्र के चिम्पैंज़ियों के शारीरिक इशारों से इनकी तुलना की। तुलना में उन्होंने पाया कि मानव शिशु द्वारा उपयोग किए जाने वाले 52 इशारों में से 46 चिम्पैंज़ी इशारा-कोश के भी हिस्से थे। शोधकर्ताओं के मुताबिक, चिम्पैंज़ी की तरह मानव शिशु भी इन इशारों का उपयोग अलग-अलग भी करते हैं और एक क्रम के रूप में भी। और प्रत्येक संकेत का उपयोग लचीले ढंग से विभिन्न उद्देश्यों के लिए किया जाता है।

चिम्पैंज़ी और मानव शिशुओं के कौन-से इशारे एक जैसे हैं? हाथ उठाना, हाथ लहराना, दूसरे के शरीर को पकड़ना, किसी दूसरे को मारना, किसी दूसरे की हथेली तक पहुंचना, पैर पटककर चलना और लयबद्ध ढंग से पैर पटकना, किसी चीज़ को फेंकना, किसी दूसरे के हाथ या उंगली को छूना, वगैरह। ये सब बेतरतीब ढंग से नहीं किए गए थे, इनमें से हरेक क्रिया कोई संदेश और मतलब लिए हुए थी। हालांकि कुछ इशारे सिर्फ मानव शिशु में देखे गए हैं, हमारे पूर्वजों में नहीं। जैसे किसी के स्वागत में या किसी को विदा कहने के लिए हाथ हिलाना। यह भी देखा गया कि मानव शिशु ने चिम्पैंज़ी से ज़्यादा बार चीज़ों की ओर इंगित किया। किंतु फिर भी मानव शिशु और चिम्पैंज़ियों में 89 प्रतिशत हावभाव या इशारे एक समान होना उनके साझा वैकासिक इतिहास का गवाह है।

जैसा कि नेचर वर्ल्ड न्यूज़ नामक अपने कॉलम में नेइया कार्लोस ने लिखा है, शोधकर्ताओं ने इसके बाद एक बड़े समूह के साथ अध्ययन करने का सुझाव दिया है, जिसमें बोनोबो जैसी प्रजातियों को शामिल किया जाए जिनके बारे में माना जाता है कि वे मानव के और भी अधिक करीब हैं। ऐसा लगता है कि हमारे हाव-भाव और भाषा हमें हमारे पूर्वजों से मिली है, और शायद डीएनए का प्रभाव क्षेत्र मात्र शरीर की रासायनिक क्रियाओं के विकास से आगे संप्रेषण व भाषा के विकास तक फैला हुआ है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.thehindu.com/sci-tech/science/ni7amf/article25807520.ece/alternates/FREE_660/23TH-SCICHIMPANZEES