कार्बन चोर सूक्ष्मजीव

दुनिया पृथ्वी की सतह के नीचे भी सूक्ष्मजीवों का एक संसार बसता है। हाल ही में हुआ एक अध्ययन बताता है कि इनमें से कुछ सूक्ष्मजीव पृथ्वी के अंदर जाकर ज़ब्त होने वाले कार्बन में से काफी मात्रा में कार्बन चुरा लेते हैं और नीचे के प्रकाश-विहीन पर्यावरण में र्इंधन के रूप में उपयोग करते हैं। सूक्ष्मजीवों की इस करतूत का परिणाम काफी नकारात्मक हो सकता है। जो कार्बन पृथ्वी की गहराई में समा जाने वाला था और कभी वापस लौटकर वायुमंडल में नहीं आता, वह इन सूक्ष्मजीवों की वजह से कम गहराई पर ही बना रह जाता है। यह भविष्य में वायुमंडल में वापस आ सकता है और पृथ्वी का तापमान बढ़ा सकता है। शोधकर्ताओं का कहना है कि पृथ्वी की गहराई में चल रहे कार्बन चक्र को समझने में अब तक इन सूक्ष्मजीवों की भूमिका अनदेखी रही थी।

वैसे तो मानव-जनित कार्बन डाईऑक्साइड पृथ्वी के भावी तापमान में निर्णायक भूमिका निभाएगी लेकिन पृथ्वी में एक गहरा कार्बन चक्र भी है जिसकी अवधि करोड़ों साल की होती है। दरअसल, धंसान क्षेत्र में पृथ्वी की एक प्लेट दूसरी प्लेट के नीचे धंसती हैं और पृथ्वी के मेंटल में पहुंचती हैं। धंसती हुई प्लेट अपने साथ-साथ कार्बन भी पृथ्वी के अंदर ले जाती हैं। यह लंबे समय तक मैंटल में जमा रहता है। इसमें से कुछ कार्बन ज्वालामुखी विस्फोट के साथ वापस वायुमंडल में आ जाता है। लेकिन पृथ्वी के नीचे पहुंचने वाला अधिकतर कार्बन वापस नहीं आता, और क्यों वापस नहीं आता यह पूरी तरह से स्पष्ट नहीं था।

2017 में कोस्टा रिका के 20 विभिन्न गर्म सोतों से निकलने वाली गैसों और तरल का अध्ययन करते समय युनिवर्सिटी ऑफ टेनेसी की सूक्ष्मजीव विज्ञानी केरेन लॉयड और उनके साथियों ने पाया था कि पृथ्वी के नीचे जाने वाली कुछ कार्बन डाईऑक्साइड चट्टानों में बदल जाती है, जो मैंटल की गहराई तक कभी नहीं पहुंचती और वापस वायुमंडल में भी नहीं आती। ये सोते उस धंसान क्षेत्र से 40 से 120 किलोमीटर ऊपर स्थित है जहां कोकोस प्लेट सेंट्रल अमेरिका के नीचे धंस रही है। इसके अलावा उन्हें यह भी संकेत मिले थे कि जितनी कार्बन डाईऑक्साइड चट्टान में बदल रही है उससे अधिक कार्बन डाईऑक्साइड कहीं और रिस रही है।

नमूनों का बारीकी से विश्लेषण करने पर शोधकर्ताओं ने ऐसी रासायनिक अभिक्रियाओं के संकेत पाए हैं जिन्हें केवल सजीव ही अंजाम देते हैं। उन्हें नमूनों में कई ऐसे बैक्टीरिया मिले हैं जिनमें इन रासायनिक अभिक्रियाओं को अंजाम देने वाले आवश्यक जीन मौजूद हैं। नमूनों से प्राप्त कार्बन समस्थानिकों के अनुपात से पता चलता है कि सूक्ष्मजीव इन धंसती प्लेटों से कार्बन डाईऑक्साइड चुरा लेते हैं और इसे कार्बनिक कार्बन में बदलकर इसका उपयोग करके फलते-फूलते हैं।

नेचर जियोसाइंस में प्रकाशित रिपोर्ट के अनुसार सिर्फ कोस्टा रिका के नीचे रहने वाले सूक्ष्मजीव हज़ारों ब्लू व्हेल के द्रव्यमान के बराबर कार्बन प्रति वर्ष चुरा लेते हैं, जो कभी न कभी वापस वायुमंडल में पहुंच जाएगा और पृथ्वी का तापमान बढ़ाएगा। हालांकि अभी इन नतीजों की पुष्टि होना बाकी है, लेकिन यह अध्ययन भविष्य में पृथ्वी के तापमान में होने वाली वृद्धि में सूक्ष्मजीवों की भूमिका को उजागर करता है और ध्यान दिलाता है कि यह पृथ्वी के तापमान सम्बंधी अनुमानों को प्रभावित कर सकती है।

इसके अलावा शोधकर्ताओं को वे सूक्ष्मजीव भी मिले हैं जो कार्बन चुराने वाले बैक्टीरिया के मलबे पर निर्भर करते हैं। शोधकर्ता यह भी संभावना जताते हैं कि कोस्टा रिका के अलावा इस तरह की गतिविधियां अन्य धंसान क्षेत्रों के नीचे भी चल रही होंगी। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/article_main_image_-1280w__no_aspect/public/Deep_earth_microbes_1280x720.jpg?itok=aqFREKgQ

अमेरिकी शहद में परमाणु बमों के अवशेष

हाल ही में हुए एक अध्ययन के अनुसार लगभग पांच दशक पूर्व किए परमाणु बम परीक्षणों के अवशेष आज भी दिखाई दे रहे हैं। शोधकर्ताओं ने शहद में रेडियोधर्मी तत्व मौजूद पाया है। हालांकि शहद में रेडियोधर्मी तत्व का स्तर खतरनाक नहीं है, लेकिन अंदाज़ है कि 1970-80 के दशक में यह स्तर काफी अधिक रहा होगा।

द्वितीय विश्व युद्ध के बाद, संयुक्त राज्य अमेरिका, पूर्व सोवियत संघ और अन्य कई देशों ने सैकड़ों परमाणु बम परीक्षण धरती की सतह पर किए थे। इन बमों से रेडियोधर्मी सीज़ियम निकला और ऊपरी वायुमंडल में पहुंचा। हवाओं ने इसे दुनिया भर में फैलाया, हालांकि हर जगह यह एक समान मात्रा में नहीं फैला था। उदाहरण के लिए, क्षेत्रीय हवाओं और वर्षा के पैटर्न के कारण अमेरिका के पूर्वी तट पर बहुत अधिक रेडियोधर्मी कण पहुंचे।

रेडियोधर्मी सीज़ियम पानी में घुलनशील है, और चूंकि इसके रासायनिक गुण पोटेशियम के समान हैं इसलिए पौधे इसे पोटेशियम मानकर उपयोग कर लेते हैं। यह देखने के लिए कि क्या अब भी पौधों में यह परमाणु संदूषण पहुंच रहा है, विलियम एंड मैरी कॉलेज के भूविज्ञानी जेम्स कास्ट ने विभिन्न स्थानों के स्थानीय खाद्य पदार्थों में रेडियोधर्मी सीज़ियम की जांच की।

उत्तरी कैरोलिना से लिए गए शहद के नमूनों के परिणाम आश्चर्यजनक थे। उन्हें इस शहद में रेडियोधर्मी सीज़ियम का स्तर अन्य खाद्य पदार्थों की तुलना में 100 गुना अधिक मिला। यह जानने के लिए कि क्या पूर्वी यूएस में मधुमक्खियां पौधों से मकरंद लेकर शहद बना रही हैं, और सीज़ियम का सांद्रण कर रही हैं, उनकी टीम ने पूर्वी यूएस के विभिन्न स्थानों से शहद के 122 नमूने एकत्रित किए और उनमें रेडियोधर्मी सीज़ियम का मापन किया। उन्हें 68 नमूनों में प्रति किलोग्राम 0.03 बेकरेल से अधिक रेडियोधर्मी सीज़ियम मिला (यानी लगभग एक चम्मच शहद में 8,70,000 रेडियोधर्मी सीज़ियम परमाणु)। सबसे अधिक (19.1 बेकरेल प्रति किलोग्राम) रेडियोधर्मी सीज़ियम फ्लोरिडा से प्राप्त नमूने में मिला।

नेचर कम्युनिकेशंस में प्रकाशित शोध पत्र के मुताबिक परमाणु बम परीक्षण स्थल से हज़ारों किलोमीटर दूर और बम परीक्षण के 50 साल बाद तक रेडियोधर्मी तत्व पौधों और जानवरों के माध्यम से पर्यावरण में घूम रहा है। हालांकि अमेरिकी खाद्य एवं औषधि प्रशासन ने स्पष्ट किया है यह स्तर चिंताजनक नहीं है। यह सुरक्षित स्तर (1200 बेकरेल प्रति किलोग्राम) से बहुत कम है।

समय के साथ रेडियोधर्मी तत्वों की मात्रा कम होती जाती है। इसलिए भले ही वर्तमान में रेडियोधर्मी सीज़ियम का स्तर कम है, लेकिन पूर्व में यह स्तर काफी अधिक रहा होगा। पूर्व में यह मात्रा कितनी होगी यह जानने के लिए शोधकर्ताओं ने दूध के नमूनों में सीज़ियम का स्तर मापा, और संग्रहालय में रखे पौधों के नमूनों का विश्लेषण किया। शोधकर्ताओं ने पाया कि 1960 के दशक के बाद से दोनों तरह के नमूनों में रेडियोधर्मी सीज़ियम का स्तर बहुत कम हुआ है, और कमी आने की यही प्रवृत्ति शहद में भी रही होगी। अनुमान है कि 1970 के दशक में शहद में सीज़ियम का स्तर मौजूदा स्तर से 10 गुना अधिक रहा होगा। सवाल उठता है कि पिछले 50 सालों में रेडियोधर्मी सीज़ियम ने मधुमक्खियों को किस तरह प्रभावित किया होगा? कीटनाशकों के अलावा अन्य मानव जनित प्रभाव भी इनके अस्तित्व को खतरे में डाल सकते हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://i.dailymail.co.uk/1s/2021/04/21/22/42053826-0-image-a-8_1619038949972.jpg

कोविड-19 के उपचार में नई दवाओं से उम्मीद

कोविड-19 के उपचार के लिए कई औषधियों के विकास पर काम चल रहा है। हाल ही में भारत में दो औषधियों को इलाज में आपातकालीन उपयोग की मंज़ूरी मिली है, व एक औषधि को क्लीनिकल परीक्षण की मंज़ूरी मिली है।

इनमें से एक औषधि है 2-डिऑक्सी-डी-ग्लूकोज़ (2-डीजी), जिसे डीआरडीओ के इंस्टीट्यूट ऑफ न्यूक्लियर मेडिसिन एंड एलाइड साइंसेज़ ने डॉ. रेड्डीस लैब के साथ मिलकर विकसित किया है। पावडर के रूप में उपलब्ध इस दवा को ड्रग कंट्रोलर जनरल ऑफ इंडिया ने कोविड-19 के उपचार में आपात उपयोग की मंज़ूरी दे दी है।

प्रारंभिक परीक्षणों में यह दवा शरीर में सार्स-कोव-2 वायरस के प्रसार को कम करने में कारगर पाई गई थी। क्लीनिकल परीक्षणों में यह दवा मध्यम और गंभीर रूप से पीड़ित कोविड-19 मरीज़ों पर अन्य मानक उपचारों के साथ प्रभावी पाई गई है। मरीज़ों में इसके कोई साइड इफेक्ट भी दिखाई नहीं दिए हैं। द्वितीय चरण के परीक्षण में इससे मरीज़ों के स्वस्थ होने की दर अधिक देखी गई और तृतीय चरण के परीक्षण में पाया गया कि इस दवा के उपयोग ने बाहरी ऑक्सीजन पर निर्भरता भी कम कर दी।

ग्लूकोज़ के समान 2-डीजी भी पूरे शरीर में फैलकर वायरस संक्रमित कोशिकाओं तक पहुंचता है, और वायरस संश्लेषण को अवरुद्ध करके तथा वायरस प्रोटीन निर्माण प्रणाली को ध्वस्त करके वायरस की वृद्धि को रोक देता है। यह फेफड़ों में फैले संक्रमण को भी रोकता है, जिससे ऑक्सीजन पर निर्भरता कम हो जाती है। जल्दी ही यह दवा देश भर के अस्पतालों में उपलब्ध हो जाएगी।

दूसरी औषधि – रोश और रीजेनेरॉन द्वारा विकसित एंटीबॉडी ड्रग-कॉकटेल – को सेंट्रल ड्रग्स स्टैण्डर्ड्स कंट्रोल ऑर्गेनाइज़ेशन ने आपात उपयोग के लिए मंज़ूरी दी है। भारत में उपयोग के लिए कैसिरिविमैब और इमडेविमैब के इस कॉकटेल को मंज़ूरी अमेरिका में प्रस्तुत आपातकालीन उपयोग की मंज़ूरी के आवेदन और युरोपीय संघ की कमेटी फॉर मेडिकल प्रोडक्ट फॉर ह्यूमन यूज़ के डैटा के आधार पर दी गई है। इस मंज़ूरी के बाद रोश इंडिया और सिप्ला मिलकर इसे भारत में आयात और वितरित कर सकेंगे।

दवा के इस कॉकटेल का परीक्षण 12 वर्ष से अधिक उम्र के कोविड-19 के हल्के और मध्यम लक्षणों वाले उन लोगों पर किया गया था, जिनमें कोविड-19 का संक्रमण गंभीर रूप लेने की संभावना थी। पाया गया कि इसके उपयोग से इन लोगों में कोविड-19 का संक्रमण गंभीर रूप नहीं ले पाया था। उम्मीद है कि इस औषधि से उच्च जोखिम वाले लोगों को गंभीर स्थिति में पहुंचने से बचाया जा सकेगा।

तीसरी दवा है, पीएनबी वेस्पर लाइफ साइंस प्राइवेट लिमिटेड द्वारा विकसित PNB-001 – बेलाडोल। ड्रग कंट्रोलर जनरल ऑफ इंडिया द्वारा कोविड-19 के मरीज़ों पर इसे द्वितीय चरण के क्लीनिकल परीक्षण करने की मंज़ूरी मिली है। प्रारंभिक क्लीनिकल परीक्षणों में इसके सकारात्मक परिणाम मिले हैं, जिसमें यह फेफड़ों की सूजन और उग्र श्वसन संकट सिंड्रोम (ARDS) को कम करने में कारगर पाई गई है। अब, द्वितीय चरण में पुणे स्थित बीएमजे मेडिकल कॉलेज में ऑक्सीजन सहायता के साथ कोविड-19 के मध्यम रूप से पीड़ित 40 मरीज़ों पर इसकी प्रभाविता जांची जाएगी। इसके बाद 350 मरीज़ों पर तृतीय चरण का परीक्षण किया जाएगा।

कोविड-19 के मुख्य लक्षण हैं बुखार, शरीर में दर्द और फेफड़ों में सूजन। कोविड-19 से मृत्यु का मुख्य कारण साइटोकाइन आक्रमण और उग्र श्वसन संकट है। पूर्व-क्लीनिकल परीक्षणों में बेलाडोल बुखार, शरीर के दर्द और फेफड़ों की सूजन को कम करने में प्रभावी पाई गई है, और इससे मृत्यु दर में 80 प्रतिशत तक की कमी देखी गई है। इसके विपरीत, वर्तमान में दुनिया भर में कोविड-19 से बचने के लिए इस्तेमाल की जा रही दवा, डेक्सामेथासोन, मृत्यु दर में केवल 20 प्रतिशत की कमी लाती है। उम्मीद है क्लीनिकल परीक्षणों में भी इसके अच्छे परिणाम मिलेंगे और इसकी मदद से मृत्यु दर में कमी लाई जा सकेगी।

इसके अलावा, बुखार और बदन दर्द को कम करने में यह दवा एस्पिरिन की तुलना में भी 20 गुना अधिक प्रभावी पाई गई है। यह भी देखा गया है कि साइटोकाइन आक्रमण को घटाने और तिल्ली की साइज़ को कम करने में भी यह कारगर है।

उम्मीद है कि इन दवाओं से कोविड-19 के हालातों को बेहतर करने में मदद मिलेगी। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://assets.thehansindia.com/h-upload/2021/05/08/1075042-dcgi.webp

अमेरिका कोविड-19 टीकों से पेटेंट हटाने के पक्ष में

कोविड-19 के टीकों के पेटेंट के सम्बंध में हाल ही में अमेरिका ने एक ऐतिहासिक कदम उठाया है। दुनिया भर में टीकों की आपूर्ति बढ़ाने के उद्देश्य से अमेरिकी सरकार ने कोविड-19 के टीकों से पेटेंट हटाने का समर्थन किया है। विश्व व्यापार संगठन की दो दिवसीय बैठक में अमेरिकी व्यापार प्रतिनिधि कैथरीन ताई ने कहा है कि हमें असाधारण परिस्थितियों में असाधारण कदम उठाने की ज़रूरत है।

पूर्व में यूएस, युरोपीय संघ, यूके और जापान ने भारत और दक्षिण अफ्रीका द्वारा कोविड-19 टीकों के जेनेरिक संस्करण के निर्माण के प्रस्ताव का विरोध किया था। अमेरिका हमेशा से बौद्धिक संपदा अधिकारों को बचाने के पक्ष में रहा है, इसलिए राष्ट्रपति बाइडेन प्रशासन द्वारा उठाए गए इस कदम से प्रस्ताव के समर्थक और विरोधी दोनों ही अचंभित हैं।

यह फैसला सार्वजनिक स्वास्थ्य की दृष्टि से बहुत ही महत्वपूर्ण है। अमीर और गरीब देशों में कोविड-19 टीकाकरण दर के बीच बहुत अधिक अंतर है। गरीब देशों में एक प्रतिशत से भी कम लोगों को कोविड-19 का टीका मिल पाया है।

विशेषज्ञों का कहना है कि कोविड-19 टीकों का पेटेंट हटाना तो टीका आपूर्ति में तेज़ी लाने का पहला कदम भर होगा। इसके बाद यह सुनिश्चित करना होगा कि टीका बनाने की जानकारी जेनेरिक निर्माताओं तक पहुंचे, और बड़े पैमाने पर उत्पादन के लिए निवेश मिले।

विश्व व्यापार संगठन पेटेंट हटाने की मंज़ूरी तब तक नहीं देगा जब तक सभी सदस्य सहमत नहीं हो जाते। वैसे स्वास्थ्य-नीति विश्लेषकों का अनुमान है कि अन्य देश भी अमेरिका के नक्शेकदम पर चलेंगे और टीकों से पेटेंट हटाने से सहमत होंगे।

दक्षिण अफ्रीका और भारत ने न सिर्फ टीकों के पेटेंट को बल्कि कोविड-19 सम्बंधी चिकित्सा उपकरणों, दवाइयों वगैरह के पेटेंट को हटाने की मांग भी की थी। लेकिन अमेरिका ने सिर्फ टीकों से पेटेंट हटाने की बात की है।

दवा कंपनियों का कहना है कि पेटेंट हटाने से कंपनियों को टीका विकास में किए भारी निवेश पर नुकसान झेलना पड़ेगा। पेटेंट रहने से कंपनियां टीकों की कीमत तय करके निवेश की रकम वसूल सकती हैं। पेटेंट हटने से बाज़ार में जेनेरिक निर्माताओं द्वारा निर्मित टीके कम दाम पर लोगों को उपलब्ध होंगे।

पेटेंट हटाने के विरोध में सिर्फ दवा कंपनियां नहीं हैं। बिल एंड मिलिंडा गेट्स फाउंडेशन के बिल गेट्स भी पेटेंट हटाने के विरोध में हैं। वे कहते हैं कि जेनेरिक निर्माता उत्पादन में तेज़ी नहीं ला सकेंगे और उनके द्वारा निर्मित टीकों की गुणवत्ता का भी सवाल रहेगा। उद्योग समूह फार्माश्यूटिकल रिसर्च एंड मैन्युफैक्चरर्स ऑफ अमेरिका का भी कहना है कि यह कदम महामारी के प्रति हमारी प्रतिक्रिया को कमज़ोर करेगा और यह सुरक्षा से समझौता होगा।

पेटेंट हटाने के समर्थकों का कहना है कि जेनेरिक निर्माता वर्षों से पूरे विश्व में उच्च गुणवत्ता वाले टीकों और दवाइयों की आपूर्ति कर रहे हैं। कई कोविड-19 टीकों के विकास में करदाताओं का भी पैसा लगा है; इस संकट की घड़ी में दवा कंपनियों का सिर्फ लागत वसूलने के बारे में सोचना अनुचित है।

बहरहाल, कई अन्य बाधाओं को भी दूर करने की ज़रूरत है। जैसे यह सुनिश्चित किया जाए कि टीकों का समान रूप से वितरण हो। कोविड-19 के लिए विकसित ये टीके विज्ञान के क्षेत्र में एक अद्वितीय विजय हैं, लेकिन अगर इनसे दुनिया की केवल 20-30 प्रतिशत आबादी को ही लाभ मिलेगा तो फिर इतनी मेहनत कर इस नवाचार को करना निरर्थक होगा। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://ichef.bbci.co.uk/news/976/cpsprodpb/12A96/production/_118383467_mediaitem118383466.jpg

जैव विविधता संरक्षण में मनुष्यों का योगदान

जैव विविधता को बचाने के लिए 1960 के दशक से ही संरक्षणवादी एक मानक समाधान देते आए हैं – प्राकृतिक क्षेत्रों को मानव दखल से बचाया जाए। लेकिन हाल ही में हुआ अध्ययन संरक्षणवादियों के इस मिथक को तोड़ता है और पिछले 12,000 सालों के दौरान मनुष्यों द्वारा भूमि उपयोग के विश्लेषण के आधार पर बताता है कि मनुष्यों ने नहीं बल्कि संसाधनों के अति दोहन ने जैव विविधता को खतरे में डाला है। अध्ययन के अनुसार 12,000 साल पूर्व भी भूस्थल का मात्र एक चौथाई हिस्सा मनुष्यों से अछूता था जबकि वर्तमान में 19 प्रतिशत है। हज़ारों वर्षों से स्थानीय या देशज लोगों और उनकी कई पारंपरिक प्रथाओं ने जैव विविधता का संरक्षण करने के साथ-साथ उसे बढ़ाने में मदद की है।

यह जानने के लिए कि इन्सानों ने जैव विविधता को कैसे प्रभावित किया है, दुनिया भर के विश्वविद्यालयों के शोधकर्ताओं के दल ने एक मॉडल तैयार कर अतीत के भूमि उपयोग का अंदाज़ा लगाया। मॉडल में उन्होंने वर्तमान भूमि उपयोग के पैटर्न को चित्रित किया – जिसमें उन्होंने जंगली इलाके, कृषि भूमि, शहर और खदानों को दर्शाया। फिर इसमें उन्होंने पूर्व और वर्तमान की जनसंख्या के आंकड़े भी शामिल किए। पिछले 12,000 वर्षों के दौरान 60 विभिन्न समयों पर मनुष्यों द्वारा भूमि उपयोग किस तरह का था, यह पता लगाने के लिए उन्होंने मॉडल में पुरातात्विक डैटा भी जोड़ा। इन जानकारियों के साथ उन्होंने रीढ़धारी जीवों की विविधता, विलुप्तप्राय प्रजातियां और संरक्षित क्षेत्र और सरकार द्वारा मान्यता प्राप्त देशज निवासी क्षेत्र सम्बंधी वर्तमान आंकड़े रखकर विश्लेषण किया।

प्रोसीडिंग्स ऑफ दी नेशनल एकेडमी ऑफ साइंस में शोधकर्ता बताते हैं कि 12,000 साल पहले पृथ्वी का लगभग एक-चौथाई हिस्सा ही मनुष्यों से अछूता था, यानी अधिकतर उन जगहों पर मनुष्यों का दखल था जिन्हें संरक्षणवादी आज ‘प्राकृतिक’, ‘अछूता’ या ‘जंगली’ भूमि कहते हैं। दस हज़ार साल पहले तक 27 प्रतिशत भूमि मनुष्यों से अछूती थी, और अब 19 प्रतिशत भूमि मनुष्यों से अछूती है। उन्होंने यह भी पाया कि प्राचीन मनुष्यों ने जैव विविधता हॉट-स्पॉट को संरक्षित करने में ही नहीं बल्कि इन हॉट-स्पॉट को बनाने में भी भूमिका निभाई है।

यह अध्ययन इस धारणा को तोड़ता है कि प्रकृति मनुष्यों से मुक्त होनी चाहिए। अध्ययन में देखा गया कि विगत 12,000 वर्षों तक भूमि उपयोग काफी हद तक स्थिर रहा था, लेकिन 1800 से 1950 के दौरान इसमें तेज़ी से परिवर्तन हुए। जैसे सघन कृषि होने लगी, शहरीकरण बढ़ा, बड़े पैमाने पर खनन कार्य हुए, और वनों की अंधाधुंध कटाई होने लगी।

मानव विज्ञानियों और पुरातत्वविदों का कहना है कि हमारे लिए ये नतीजे कोई आश्चर्य की बात नहीं है। यह तो हम पहले से ही जानते हैं कि जंगल जलाकर खेती जैसे कार्य कर मनुष्य सदियों से भूमि प्रबंधन कर रहे हैं। देशज निवासियों के अधिकारों के संरक्षण अभियान, सर्वाइवल इंटरनेशनल, के प्रमुख फियोर लोंगो इन नतीजों पर सहमति जताते हुए कहते हैं कि यह अध्ययन हमारी उस बात की पुष्टि करता है जो हम वर्षों से कहते आए हैं – जंगलों को निर्जन रखे जाने की धारणा एक औपनिवेशिक और नस्लवादी मिथक है जिसके पीछे कोई वैज्ञानिक आधार नहीं है, और इस धारणा का उपयोग अन्य लोग अक्सर इन भूमियों को हड़पने के लिए करते हैं।

लेकिन मानव विज्ञानी कहते हैं कि हमें यह भी ध्यान रखना चाहिए कि हर मूल निवासी या स्थानीय समूह जैव विविधता कायम नहीं रखता। जैसे कुछ प्राचीन लोगों के कारण ही मैमथ और प्रशांत द्वीप के उड़ान रहित पक्षी विलुप्त हो गए। लेकिन यह बात भी उतनी ही सच है कि अन्य लोगों की तुलना में स्थानीय लोग प्रकृति का बहुत अच्छे से ख्याल रखते हैं और संरक्षक की भूमिका निभाते हैं। यदि स्थानीय लोगों की प्रथाएं जैव विविधता के लिए सकारात्मक या हितकारी हैं, तो विलुप्त होती प्रजातियों को बचाने के लिए हमें उन लोगों को जंगलों से बेदखल करने की ज़रूरत नहीं है। बल्कि हमें उनकी भूमि को संरक्षित करने के लिए इन लोगों को सशक्त बनाना चाहिए। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/article_main_image_-1280w__no_aspect/public/Wildlands_1280x720.jpg?itok=3Vw7Y9fE

नए वायरस संस्करणों से सुरक्षा देते हैं टीके

कोविड-19 महामारी के संदर्भ में एक चिंता यह व्यक्त हुई है कि क्या वर्तमान टीके वायरस के नए-नए संस्करणों के विरुद्ध सुरक्षा प्रदान करेंगे। खाड़ी के देश कतर से प्राप्त जानकारी से पता चलता है कि फाइज़र का टीका वायरस के नए संस्करणों के खिलाफ भी सुरक्षा प्रदान करता है। गौरतलब है कि महामारी की दूसरी लहर में खाड़ी देशों में यूके में पहचाना गया बी.1.1.7 संस्करण प्रमुख रूप से पाया गया था। फिर बी.1.351 संस्करण भी पाया गया जो पुन: संक्रमण और टीके के प्रभाव को कम करने के लिए जाना जाता है। महामारी रोग विशेषज्ञ इस संस्करण को सबसे खतरनाक मानते हैं।

इस लहर के दौरान शोधकर्ताओं ने ऐसे मज़बूत साक्ष्य प्रदान किए हैं कि वर्तमान टीके बी.1.351 को रोकने में सक्षम हैं। इससे पहले दक्षिण अफ्रीका में किए गए क्लीनिकल परीक्षणों में टीकों ने ऐसे संस्करणों के विरुद्ध अच्छे परिणाम दिए थे। नए प्रमाण दर्शाते हैं कि कतर में जिन लोगों को फाइज़र-बायोएनटेक टीके की दो खुराकें प्राप्त हुई हैं उनमें बिना टीकाकृत लोगों की तुलना में बी.1.351 के कारण कोविड से ग्रसित होने की संभावना 75 प्रतिशत कम है। इसके अलावा टीके ने गंभीर बीमारी के विरुद्ध लगभग पूर्ण सुरक्षा भी प्रदान की है।  

दी न्यू इंग्लैंड जर्नल ऑफ मेडिसिन में प्रकाशित रिपोर्ट के अनुसार वर्तमान आरएनए आधारित टीके प्रतिरक्षा को भेदने वाले सबसे घातक संस्करणों के विरुद्ध काफी प्रभावशाली साबित हुए हैं। फिर भी कंपनियां बी.1.351 स्ट्रेन के विरुद्ध अधिक विकसित आरएनए टीका बनाने की कोशिश कर रही हैं।     

गौरतलब है कि दक्षिण अफ्रीका के शोधकर्ताओं ने 2020 के अंत में बी.1.351 की पहचान की थी जो अब वहां प्रमुख स्ट्रेन है। अध्ययनों से पता चला है कि इस स्ट्रेन में ऐसे उत्परिवर्तन हुए हैं जो वायरस-रोधी एंटीबॉडी को कमज़ोर कर सकते हैं। परीक्षणों के आधार पर कहा जा रहा है कि कुछ कोविड-19 टीके अन्य स्ट्रेन की तुलना में इस स्ट्रेन के विरुद्ध कम प्रभावशाली हैं। अप्रैल में दक्षिण अफ्रीका में कंपनियों द्वारा किए गए एक छोटे से परीक्षण में इन टीकों को बी.1.351 के विरुद्ध प्रभावी बताया गया था हालांकि 800 लोगों पर किए गए अध्ययन में प्लेसिबो समूह में भी बी.1.351 के कारण सिर्फ छह संक्रमण पाए गए थे। यानी काफी लोग बगैर टीके के भी सुरक्षित रहे थे।             

अबू-रदाद की टीम ने कतर में दिसंबर के अंत में शुरू हुए टीकाकरण अभियान से लेकर मार्च के अंत तक जीनोम अनुक्रम के आधार पर इस अवधि के दौरान बी.1.1.7 और बी.1.351 प्रमुख संस्करण के रूप में पाए और फरवरी के मध्य से तो देश के आधे से अधिक मामलों में यही संस्करण देखे गए हैं।      

शोधकर्ताओं ने टीकाकृत लोगों में सार्स-कोव-2 संक्रमण दर की तुलना गैर-टीकाकृत लोगों से की। इस्राइल, यूके और अन्य देशों के परिणामों के अनुसार जिन लोगों को टीके की दो खुराकें प्राप्त हुई हैं उनमें बी.1.1.7 के कारण संक्रमण की संभावना लगभग 90 प्रतिशत कम पाई गई। शोधकर्ताओं ने टीकाकृत लोगों में बी.1.351 संस्करण के 1500 ‘ब्रेकथ्रू’ मामलों की पहचान की है जिनमें से सिर्फ 179 मामले ही टीके की दूसरी खुराक लगने के दो हफ्तों के बाद हुए थे। पूर्ण रूप से टीकाकृत लोगों में बी.1.1.7 या बी.1.351 के कारण कोविड-19 का कोई गंभीर मामला सामने नहीं आया यानी उनके अस्पताल में भर्ती होने या मृत्यु के मामले न के बराबर पाए गए।       

कतर से प्राप्त नतीजे काफी आशाजनक हैं। आरएनए टीकों की दो खुराकों से वायरस-रोधी एंटीबॉडी के तुलनात्मक रूप से उच्च स्तर से यह पता चलता है कि अन्य टीकों (जैसे ऑक्सफोर्ड-एस्ट्राज़ेनेका टीके) की तुलना में आरएनए आधारित टीके बी.1.351 के विरुद्ध बेहतर सुरक्षा प्रदान करते हैं। लेकिन वैज्ञानिकों को उम्मीद है कि अन्य टीके भी इस संस्करण के कारण होने वाली गंभीर बीमारी को रोकने में सक्षम होंगे। न्यू इंग्लैंड जर्नल ऑफ मेडिसिन में प्रकाशित रिपोर्ट के अनुसार नोवावैक्स द्वारा निर्मित टीके ने दक्षिण अफ्रीका में कोविड-19 के जोखिम को 60 प्रतिशत तक कम किया। इसी तरह पता चला है कि यह टीका बी.1.351 के कारण होने वाले कोविड-19 के गंभीर मामलों के खिलाफ अत्यधिक प्रभावी रहा है हालांकि ये आंकड़े अभी प्रकाशित नहीं हुए हैं।     

वैज्ञानिकों का मानना है कि यदि टीकों की प्रभाविता बी.1.351 के विरुद्ध कम है तो इस स्ट्रेन से प्रभावित देशों में अत्यधिक सफल टीकाकरण कार्यक्रम उस हद तक मामलों को नियंत्रित नहीं कर पाएंगे जिस हद तक कम क्षमता वाले संस्करणों को नियंत्रित कर पा रहे हैं। फिर भी उच्च जोखिम वाले लोगों की रक्षा करके हम सामान्य जीवनशैली की ओर कुछ हद तक तो लौट ही सकते हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://agenda.ge/files/weekend/3101phiser.jpg

टीका: जोखिम बेहतर ढंग से समझाने की ज़रूरत

ज़ारों-लाखों वालंटियर्स पर किसी नई दवा या टीके को कारगर और सुरक्षित पाए जाने के बाद जब वही दवा या टीका करोड़ों को दिया जाता है तो सुरक्षा सम्बंधी कई मुद्दे सामने आते हैं। इस दृष्टि से कोविड-19 के जॉनसन एंड जॉनसन (जे-एंड-जे) या एस्ट्राज़ेनेका टीके से चंद लोगों में दुर्लभ समस्या देखा जाना कोई अनहोनी नहीं है।

लेकिन ऐसे दुर्लभ किंतु खतरनाक साइड इफेक्ट स्वास्थ्य महकमे के सामने दुविधा खड़ी कर सकते हैं। गौरतलब है कि जे-एंड-जे के टीके से दस लाख टीकाकृत व्यक्तियों में से दो व्यक्तियों में रक्त का थक्का बनने की समस्या देखी गई है, वहीं एस्ट्राज़ेनेका टीके में एक लाख में से एक व्यक्ति में यही समस्या देखी गई है। लेकिन दोनों ही टीकों के ये साइड इफेक्ट कोविड-19 के जोखिम की तुलना में बहुत कम हैं: कोविड-19 से एक लाख लोगों में से 200 व्यक्तियों की मौत हो जाती है।

एक तरफ तो, संभावित साइड इफेक्ट को लेकर जनता के साथ पारदर्शिता रखना बहुत महत्वपूर्ण है। साथ ही यह भी पता होना चाहिए कि इन समस्याओं को कैसे पहचानें और इलाज करें। दूसरी ओर, ऐसा करने पर टीकों को लेकर संदेह पैदा हो सकते हैं औरटीके के प्रति हिचक और मज़बूत हो सकती है।

यदि यह बताया जाए कि जोखिम बहुत कम (दस लाख लोगों में एक) है, तो कुछ लोग फौरन यह सोचने लगते हैं कि शायद वह एक व्यक्ति मैं ही हूं। सवाल है कि लोग किस हद तक बहुत दुर्लभ लेकिन गंभीर दुष्प्रभावों को व्यावहारिक रूप में समझ पाएंगे? अध्ययन बताते हैं कि साधारण लोग किसी दवा या टीके के जोखिम की संभावना या लाभ-हानि के अनुपात को समझ नहीं पाते। यदि कोई दुष्प्रभाव नया और घातक है तो लोग उसकी संभावना को अधिक मान कर चलते हैं। वैसे मनोविज्ञानियों का मानना है कि यदि लोगों को स्पष्ट और सही तरह से जानकारी दी जाए तो इस तरह के भ्रम बनने से रोका जा सकता है।

मार्च के अंत तक युरोपीय मेडिसिन एजेंसी (ईएमए) को युरोप और यूके में एस्ट्राज़ेनेका से टीकाकृत ढाई करोड़ लोगों में से 86 लोगों में रक्त का थक्का बनने के मामले दिखे, जिनमें से 18 लोगों की मृत्यु हुई थी। अधिकांश मामले 60 साल से कम उम्र की महिलाओं में देखे गए थे। फिर अमेरिका में जे-एंड-जे से टीकाकृत अस्सी लाख में से 15 लोगों में रक्त का थक्का जमने की समस्या सामने आई, और तीन मामले गंभीर स्थिति में पहुंचे थे। ये मामले भी 60 से कम उम्र की महिलाओं में देखे गए थे।

इन मामलों के चलते अमेरिका और युरोप ने दोनों टीकों के वितरण पर रोक लगा दी। फिर दोनों ने निष्कर्ष निकाला कि टीकों का लाभ इन जोखिमों से कहीं अधिक है, इसलिए इनका वितरण फिर से शुरू किया जाए।

यह बहस का मुद्दा है कि महामारी को थामने के प्रयासों के मद्देनज़र टीकों पर हफ्ते भर लंबी रोक लगाना कितना उचित था? आकंड़ों को देखें तो जवाब है – बिल्कुल नहीं। लाखों लोगों को टीका देने पर सिर्फ कुछ ही लोग इस जोखिम से पीड़ित होंगे, लेकिन टीका न दिए जाने पर लाखों संक्रमित लोगों में से हज़ारों की जान जा सकती है।

अधिकतर लोग आंकड़ों की भूलभुलैया में उलझ जाते हैं। लिहाज़ा, ज़रूरी है कि बात को ठीक तरह से प्रस्तुत किया जाए। यह भी समझना ज़रूरी है कि कोई भी औषधि या टीका जोखिमों से पूरी तरह मुक्त नहीं होता।

वैसे ज़्यादा चिंता विकसित देशों में नज़र आ रही है लेकिन भारत को इनसे पूरी तरह मुक्त नहीं माना जा सकता। बेहतर होगा कि समय रहते इस मुद्दे को संबोधित किया जाए। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.jhsph.edu/sebin/h/e/sars-cov-2-vaccine-1200×630.jpg

क्या सार्स-कोव-2 हवा से फैलता है?

मार्च 2021 में डबल्यूएचओ द्वारा वित्तपोषित एक व्यवस्थित समीक्षा (कार्ल हेनेगन और साथी) के आधार पर निष्कर्ष निकाला गया है कि कोविड वायरस हवा के माध्यम से नहीं फैलता। यह निष्कर्ष जन स्वास्थ्य की दृष्टि से महत्वपूर्ण है।

यदि यह वायरस श्वसन के दौरान संक्रमित ड्रॉपलेट्स से फैलता है, जो काफी तेज़ी से नीचे बैठ जाती हैं, तो इनको नियंत्रित करने के लिए शारीरिक दूरी, मास्क का उपयोग, श्वसन स्वच्छता, सतहों की सफाई, और मात्र उन स्वास्थ्य प्रक्रियाओं के दौरान सुरक्षा देने वाले साधनों का उपयोग करना होगा जिनमें एयरोसोल उत्पन्न होते हैं। इस स्थिति में खुली और बंद जगहों में कोई अंतर नहीं होगा क्योंकि दोनों जगहों पर संक्रमित बूंदें एक समान समय में ज़मीन पर गिर जाएंगी।

लेकिन यदि कोई संक्रामक वायरस हवा के माध्यम से फैलता है तो किसी संक्रमित व्यक्ति द्वारा सांस छोड़ने, बोलने, चिल्लाने, गाने, छींकने-खांसने के बाद वहां की हवा में सांस लेने से अन्य लोग संक्रमित हो सकते हैं।

इस स्थिति में संक्रामक एयरोसोल को सांस के माध्यम से शरीर में प्रवेश करने से रोकना ज़रूरी है। इसमें हवा की आवाजाही, फिल्टरेशन, भीड़-भाड़ और अंदर रहने से बचना, अंदर रहें तो मास्क का उपयोग और स्वास्थ्य कार्यकर्ताओं के लिए उच्च-स्तरीय सुरक्षा साधनों का उपयोग करना शामिल होगा।

हवा के माध्यम से न फैलने सम्बंधी उक्त निष्कर्ष इस तथ्य पर आधारित है कि किसी जगह की हवा में वायरस नहीं मिले हैं। इस अध्ययन की विस्तृत समीक्षा विभिन्न वैज्ञानिकों द्वारा की गई है। त्रिशा ग्रीनहैलाग और उनके साथियों का मत है कि इस बात के पर्याप्त प्रमाण हैं कि यह वायरस हवा के माध्यम से भी फैलता है। उनके तर्कों का सार प्रस्तुत है।

वैसे तो यह दर्शाना मुश्किल होता है कि कोई श्वसन सम्बंधी वायरस हवा के माध्यम से फैलता है। दशकों से हुए शोध, जिनमें जीवित रोगजनक कीटाणुओं को हवा में प्राप्त करने के प्रयास नहीं किए गए थे, यह दर्शाते हैं कि जिन रोगों को श्वसन ड्रॉपलेट्स द्वारा फैलने वाला माना गया था, वे दरअसल हवा-वाहित थे। यहां दस ऐसे प्रमाण प्रस्तुत हैं जो सार्स-कोव-2 वायरस को मुख्य रूप से हवा-वाहित होना दर्शाते हैं।

पहला, सार्स-कोव-2 संचरण में सुपर स्प्रेडिंग की घटनाएं काफी प्रमुख होती हैं। ऐसी घटनाओं के दौरान मानव व्यवहार और अंतर्क्रियाओं के अलावा कमरे के आकार, हवा की आवाजाही और अन्य कारकों के विश्लेषण से ऐसे पैटर्न (लंबी दूरी के संचरण और प्रजनन संख्या में वृद्धि) मिले हैं जो सार्स-कोव-2 के हवा-वाहित होने के संकेत देते हैं। इन पैटर्न्स को मात्र ड्रॉपलेट्स या संक्रमित वस्तुओं के माध्यम से प्रसार के आधार पर नहीं समझा जा सकता।

दूसरा, क्वारेंटाइन होटलों में पास-पास के कमरों में रह रहे लोगों के बीच लंबी दूरी के सार्स-कोव-2 संचरण के मामले दर्ज किए गए हैं जबकि वे कभी एक-दूसरे के प्रत्यक्ष संपर्क में नहीं आए।

तीसरा, संभावना है कि सार्स-कोव-2 का एक-तिहाई (शायद 59 प्रतिशत तक) संक्रमण बिना खांसने या छींकने वाले (लक्षण-हीन या लक्षण-पूर्व) लोगों से हुआ है। यह सार्स-कोव-2 के फैलने का प्रमुख कारण है। यह मुख्य रूप से हवा के माध्यम से वायरस के फैलने का समर्थन करता है। प्रत्यक्ष मापन से यह पता चलता है कि मात्र बोलने से बड़ी संख्या में एयरोसोल कण उत्पन्न होते हैं जबकि ड्रॉपलेट्स की संख्या बहुत कम होती है। यह तथ्य भी हवा के माध्यम से वायरस का फैलाव दर्शाता है।

चौथा, सार्स-कोव-2 का संचरण बाहर की तुलना में घर के अंदर (इनडोर) अधिक होता है, और इसे उचित वेंटिलेशन से कम किया जा सकता है। यह तथ्य भी वायरस के हवाई मार्ग से फैलने का समर्थन करता है।

पांचवां, ऐसी परिस्थितियों में अस्पताल-जनित संक्रमण रिकॉर्ड किए गए हैं जहां ड्रॉपलेट्स से संपर्क से बचने के लिए सख्त उपाय लागू किए गए हैं। गौरतलब है कि ये उपाय एयरोसोल से बचाव करने में सक्षम नहीं होते हैं।

छठा, सक्रिय सार्स-कोव-2 हवा में पाया गया है। प्रयोगशाला में किए गए प्रयोगों से पता चला है कि सार्स-कोव-2 हवा में 3 घंटे तक संक्रामक रहता है। सक्रिय सार्स-कोव-2 वायरस कोविड-19 रोगियों के कमरों से प्राप्त हवा के नमूनों में पाया गया है जहां एयरोसोल उत्पन्न करने वाली स्वास्थ्य सेवा प्रक्रियाएं प्रयुक्त नहीं की गई थीं। संक्रमित व्यक्ति द्वारा उपयोग की गई कार से लिए गए हवा के नमूने में भी वायरस प्राप्त हुए हैं। वैसे हवा के नमूने में सक्रिय वायरस प्राप्त करना काफी चुनौतीपूर्ण होता है।

सातवां, सार्स-कोव-2 वायरस कोविड-19 रोगियों का उपचार करने वाले अस्पतालों के एयर फिल्टर और विभिन्न परिवहन नलियों में भी पाए गए हैं जहां ये सिर्फ एयरोसोल के माध्यम से ही पहुंच सकते हैं।

आठवां, पिंजरे में कैद संक्रमित जीवों से संक्रमण दूसरे पिंजरों में रखे गए असंक्रमित जानवरों में भी पहुंच गया जिनके बीच संपर्क मात्र वायु नलियों के माध्यम से था। यह एयरोसोल द्वारा वायरस के संचरण का प्रमाण है।

नौवां, अब तक किसी भी अध्ययन ने सार्स-कोव-2 के हवा से फैलने की परिकल्पना का खंडन नहीं किया है। कुछ लोग अवश्य संक्रमित लोगों के साथ हवा साझा करते हुए भी सार्स-कोव-2 वायरस से बच पाए हैं। लेकिन इसकी व्याख्या कई परस्थितियों के आधार पर की जा सकती है। जैसे संक्रमित व्यक्ति द्वारा छोड़े गए वायरसों की मात्रा और विभिन्न पर्यावरणीय कारक ज़िम्मेदार हो सकते हैं।

दसवां, देखा जाए तो संक्रमण के अन्य संभावित रास्तों जैसे श्वसन ड्रॉपलेट्स या संक्रमित वस्तुओं के माध्यम से संचरण के समर्थन में प्रमाण सीमित हैं। निकट संपर्क में रहने वाले लोगों में संक्रमण के पीछे सार्स-कोव-2 वायरस की श्वसन ड्रॉपलेट्स के संचरण को कारण बताया गया है। लेकिन अधिकांश मामलों में निकट संपर्क से संचरण में संक्रमित व्यक्ति द्वारा सांस के साथ छोड़े गए एयरोसोल की अधिक संभावना प्रतीत होती है। दूर-दूर बैठे लोगों के बीच संक्रमण कम फैलने का कारण सिर्फ इतना हो सकता है कि एयरोसोल बहुत दूर तक नहीं पहुंचते।

यह धारणा गलत है कि निकट संपर्क से संक्रमण का फैलाव मात्र श्वसन की बूंदों या संक्रमित वस्तुओं के माध्यम से होता है। कई दशकों तक टीबी और खसरा के बारे में यही माना जाता था कि ये श्वसन बूंदों के माध्यम से फैलते हैं। चिकित्सा के क्षेत्र में यह एक रूढ़ि बन गई जिसमें एयरोसोल और ड्रॉपलेट्स के प्रत्यक्ष मापन को अनदेखा किया गया। मापन के अभाव में यह पता ही नहीं चला कि श्वसन के दौरान भारी मात्रा में एयरोसोल उत्पन्न होते हैं। इसके अलावा एयरोसोल और ड्रॉपलेट्स के बीच की सीमा रेखा को मनमाने ढंग से 5 माइक्रोमीटर तय कर दिया गया जबकि यह 100 माइक्रोमीटर होनी चाहिए। कई बार यह तर्क भी दिया जाता है कि ड्रॉपलेट्स एयरोसोल की तुलना में बड़ी होती हैं इसलिए उनमें वायरसों की संख्या अधिक होगी। हालांकि, उन रोगों में जहां कण के आकार के आधार पर रोगजनकों की सांद्रता की मात्रा निर्धारित की गई है उनमें ड्रॉपलेट्स की तुलना में एयरोसोल में रोगजनकों की सांद्रता अधिक पाई गई है।

देखा जाए तो सार्स-कोव-2 के हवा से फैलने के सशक्त साक्ष्य मौजूद हैं। इसके फैलने के अन्य रास्ते भी हो सकते हैं, लेकिन हवा से फैलने की संभावना काफी अधिक है। इन संभावनाओं को ध्यान में रखते हुए जन स्वास्थ्य समुदाय को बिना देर किए उसके अनुसार कार्य करना चाहिए। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://static.toiimg.com/photo/imgsize-492352,msid-82144736/82144736.jpg

कोविड-19 पर भारत के मुगालते की आलोचना

भारत कोविड-19 की दूसरी लहर से जूझ रहा है। वर्ष 2020 की पहली लहर की तुलना में इस बार रोज़ नए मामलों और मरने वालों की संख्या भी काफी तेज़ी से बढ़ रही है। इस दौरान अस्पताल, ऑक्सीजन, वेंटीलेटर और दवाइयों के लिए काफी संघर्ष करना पड़ रहा है।

भारत में कोविड-19 के मामले मई में 4 लाख प्रतिदिन से अधिक हो चुके थे। कई शहरों में स्वास्थ्य सेवा का बुनियादी ढांचा चरमरा गया। महाराष्ट्र व दिल्ली जैसे कुछ राज्यों में सरकार को कर्फ्यू और लॉकडाउन का सहारा लेना पड़ा। राज्य सरकारें स्वास्थ्य सुविधाओं और ऑक्सीजन संयंत्रों के निर्माण के प्रयास कर रही हैं। विशेषज्ञों का कहना है कि यह तैयारी काफी पहले ही कर लेना चाहिए थी।

पब्लिक हेल्थ फाउंडेशन ऑफ इंडिया के प्रमुख श्रीनाथ रेड्डी के अनुसार वर्ष 2021 की शुरुआत में ही नीति निर्माता, मीडिया और जनता में यह मान्यता बनने लगी थी कि भारत में महामारी खत्म हो गई है, और हमने झुंड प्रतिरक्षा प्राप्त कर ली है। कुछ वैज्ञानिकों ने भी इस मत को हवा दी। दूसरी लहर न आने के विश्वास के चलते अर्थ व्यवस्था को मज़बूत करने के उद्देश्य से सभी गतिविधियां फिर से पहले की तरह शुरू कर दी गर्इं। भारत में इस वर्ष जनवरी और फरवरी में मामलों में कमी देखी गई थी, और मार्च में बड़े-बड़े सार्वजनिक समारोह आयोजित हुए और किसी प्रोटोकॉल का पालन नहीं हुआ। इसी माह पांच राज्यों में मतदान भी हुए जिसमें प्रधानमंत्री सहित कई राजनेताओं ने सैकड़ों बड़ी रैलियां कीं। हालांकि चुनाव आयोग ने बड़ी रैलियां और रोड-शो आयोजन के खिलाफ कार्रवाई की चेतावनी भी दी, लेकिन न किसी ने इस पर कोई ध्यान दिया और न ही आयोग ने किसी पर कोई कार्रवाई की।

कोविड मामलों में निरंतर वृद्धि के बाद भी कुंभ मेला आयोजित करने की अनुमति दी गई। इस दौरान लाखों लोगों ने गंगा नदी में डुबकी लगाई। यह त्योहार 1 अप्रैल को शुरू हुआ और 17 दिन बाद स्थानीय अधिकारियों द्वारा इस पर रोक लगाई गई। स्थानीय अधिकारियों ने इस त्योहार में भाग लेने आए लोगों में कोविड-19 के 2000 मामलों की सूचना दी। विशेषज्ञों का कहना है कि ऐसी गंभीर परिस्थितियों में बड़े सामूहिक समारोहों, यात्राओं और भीड़-भाड़ जुटाने से बचना चाहिए था। इसके साथ ही मास्क जैसे सुरक्षा उपायों को अपनाना भी आवश्यक था। इन सावधानियों से सामूहिक समारोहों में न केवल लोग सुरक्षित रहते बल्कि उनको महामारी के खत्म होने के गलत संकेत भी नहीं मिलते।

वर्तमान में अस्पतालों में ऑक्सीजन की कमी से देशभर में संकट की स्थिति बन गई है। कई गैर-सरकारी संगठन और वालंटियर्स ऑक्सीजन प्रदान करने के लिए हर संभव प्रयास कर रहे हैं। सोशल मीडिया पर प्रतिदिन हज़ारों लोग ऑक्सीजन सिलिंडर या अस्पताल में ऑक्सीजन युक्त बिस्तर या वेंटीलेटर के लिए गुहार लगा रहे हैं।

भारत सरकार द्वारा अप्रैल की शुरुआत में जारी किए गए आंकड़ों के अनुसार भारत में ऑक्सीजन का दैनिक उत्पादन 7127 मीट्रिक टन और खपत 3842 मीट्रिक टन थी। इसके कुछ ही दिनों के बाद जब कुछ अस्पतालों ने ऑक्सीजन की कमी की जानकारी उच्च न्यायलय को दी तो पता चला कि ऑक्सीजन की प्रतिदिन खपत 8000 मीट्रिक टन से भी अधिक हो चुकी है।

केंद्र और राज्य सरकारों ने पहली लहर के थमने के बाद अस्पतालों में की गई ऑक्सीजन व्यवस्था को वापस ले लिया था। हालांकि, उस समय की स्थिति को देखते हुए शायद यह एक ठीक निर्णय था लेकिन सरकारी प्रणाली में इतना लचीलापन नहीं था कि कोविड मामले बढ़ने पर एक बार फिर ऑक्सीजन की आपूर्ति की जा सके।

ऑक्सीजन की आपूर्ति और दवाओं के लिए युरोपीय संघ तथा जर्मनी ने हर संभव मदद का वादा किया है। इसके अलावा भारत सरकार ने तरल ऑक्सीजन कंटेनरों को एयरलिफ्ट करने के लिए हवाई जहाज़ भी भेजे हैं। अमेरिका ने भी कहा है कि वह कोविड-19 टीका तैयार करने के लिए आवश्यक कच्चा माल भेज रहा है और ऑक्सीजन का उत्पादन करने वाले उपकरण भेजने का भी प्रयास कर रहा है।

भारत में बढ़ते हुए कोविड-19 मामलों ने विदेशी सरकारों को अधिक सतर्क कर दिया है। कई देशों ने भारत से आने वाले लोगों पर रोक लगा दी है।

टीकाकरण के मामले में निर्यात के चलते भारत स्वयं के लिए टीकों की कमी का सामना कर रहा है। जिन लोगों को टीके की पहली खुराक मिल चुकी है उनको दूसरी खुराक नहीं मिल पा रही है। देश भर के टीकाकरण केंद्रों से टीकों की कमी की शिकायतें आ रही हैं। अशोका युनिवर्सिटी के वायरोलॉजिस्ट शाहिद जमील इसके पीछे खराब नियोजन को कारण बताते हैं। भारत ने टीका निर्माताओं को उपयुक्त आदेश ही नहीं दिए ताकि वे पर्याप्त मात्रा में खुराक तैयार करके रख सकें। 

स्वास्थ्य मंत्रालय द्वारा दी गई जानकारी के आधार पर भारत सरकार ने पिछली बार 8 अप्रैल को सूचित किया कि उसके पास 2.4 करोड़ टीकों का स्टॉक है। 26 अप्रैल तक भारत में 14.5 करोड़ खुराकें दी जा चुकी थीं और जुलाई तक 50 करोड़ टीके लगाने का आश्वासन दिया गया है। इस बीच 18 वर्ष से अधिक उम्र के लोगों के टीकाकरण की घोषणा भी कर दी गई है। हैरानी की बात है कि टीकों की कमी के बाद भी भारत डबल्यूएचओ और कोवैक्स सुविधा में व्यावसायिक रूप से टीकों का निर्यात जारी रखे है। वैसे तो टीका कूटनीति और निर्यात की नीति में कोई समस्या नहीं है लेकिन भारत ने अपनी मांग का कम आकलन किया है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://static.dw.com/image/57275626_303.jpg

प्रतिरक्षा व्यवस्था और शरीर की हिफाज़त – 3 – विनीता बाल, सत्यजीत रथ

प्रतिरक्षा तंत्र लक्ष्य की पहचान कैसे करता है?

प्रतिरक्षा तंत्र की ऐसी डिज़ाइन कैसे बनी है कि वह अलग-अलग लक्ष्यों के साथ अलग-अलग व्यवहार करता है? कुछ के खिलाफ एंटीबॉडी बनाई जाती हैं, वायरस संक्रमण के खिलाफ मारक कोशिकाएं बनाई जाती हैं और संक्रमित मैक्रोफेज के लिए हेल्पर कोशिकाएं।

प्रतिरक्षा तंत्र का संगठन

हमने पहले यह चर्चा की थी कि परजीवी शरीर में घुसने के लिए कई प्रवेश बिंदुओं का इस्तेमाल करते हैं। वे सांस के साथ घुस सकते हैं (जैसे टीबी के बैक्टीरिया), आंतों की दीवार के ज़रिए घुस सकते हैं (जैसे टायफॉइड बैक्टीरिया) या त्वचा से प्रवेश कर सकते हैं (जैसे मलेरिया परजीवी जो मच्छर के दंश के साथ घुसता है)। प्रतिरक्षा तंत्र पूरे शरीर में फैला होता है और उसकी कोशिकाएं लगभग समूचे कोशिका-बाह्य स्थानों की गश्त करती रहती हैं। दरअसल, वे रक्त में विचरण करती हैं, छोटी-से-छोटी केशिकाओं तक पहुंचती हैं और वहां से रक्त वाहिनियों से बाहर निकलकर ऊतकों में पहुंच जाती हैं।

संभाविता के आधार पर देखा जाए तो ऊतकों में ही वह स्थान है जहां अधिकांश घुसपैठिए सबसे पहले पहुंचेंगे, चाहे कहीं से भी घुसे हों। इस स्थान का पदार्थ तथाकथित लसिका वाहिनियों में पहुंचता है और वहां से यह ऐसे अंगों तक पहुंचता है जहां आने वाले पदार्थ की जांच करके घुसपैठियों का पता लगाया जाता है। इन अंगों को लसिका ग्रंथियां कहते हैं (कई बार पैरों में संक्रमित घाव हो, तो जांघ के ऊपरी हिस्से में गठान-सी बनती है या टॉन्सिल होने पर गले में गठान महसूस होती है। ये लसिका ग्रंथियां हैं।) यहीं पर प्रतिरक्षा तंत्र की कोशिकाओं का जमावड़ा होता है। यानी अस्थि मज्जा में उत्पन्न होने और थायमस ग्रंथि में परिपक्व होने (टी-कोशिकाओं के मामले में) के बाद प्रतिरक्षा कोशिकाएं अपना अधिकांश समय या तो इन लसिका ग्रंथियों में बिताती हैं, अथवा खून में गश्त करती रहती हैं।

कुल मिलाकर उनका रास्ता होता है – रक्त वाहिनियों से ऊतकों में कोशिका बाह्य स्थान, वहां से लसिका तंत्र से होते हुए वापिस रक्त वाहिनियों में। लिहाज़ा, घुसपैठियों के खिलाफ प्रतिक्रिया काफी त्वरित हो सकती है और पूरे मामले को स्थानीय लसिका ग्रंथियों के स्तर पर ही निपटाया जा सकता है।

प्रतिरक्षा तंत्र के किरदार

अब तक हमने सामान्य रूप से प्रतिरक्षा कोशिकाओं की बात की है। इससे लग सकता है कि ये सारी कोशिकाएं एक जैसी होती हैं। लेकिन ज़ाहिर है कि इनसे विभिन्न कार्य करने की उम्मीद की जाती है और इसलिए विशिष्टीकरण ज़रूरी है। उदाहरण के लिए, कुछ कोशिकाएं एंटीबॉडी बनाएंगी जबकि हो सकता है कि कुछ अन्य कोशिकाएं मैक्रोफेज को सक्रिय करें। तो सवाल यह है कि कौन क्या करता है। इसे समझने के लिए आक्रमण और बचाव की उन रणनीतियों पर गौर करते हैं जिनकी चर्चा हम कर चुके हैं। हर मामले में हम यह देखेंगे कि जन्मजात प्रतिरक्षा के क्लोनल एकरूपी और अनुकूली प्रतिरक्षा के क्लोनल विविधरूपी घटक क्या योगदान देते हैं।

कोशिका-बाह्य घुसपैठिए

घुसपैठियों का सबसे पहला निशे (अड्डा) कोशिकाओं के बाहर की जगह है। इनके लिए ऐसी भक्षी (फैगोसायटिक) कोशिकाओं की ज़रूरत होती है जो घुसपैठियों को निगलकर मार सकें। यह काम करने वाली क्लोनल एकरूपी कोशिकाएं ग्रेनुलोसायटिक कोशिकाएं होती हैं – खास तौर से न्यूट्रोफिल ग्रेनुलोसाइट और मैक्रोफेज।

क्लोनल एकरूपी श्रेणी में कुछ आणविक किरदार भी होते हैं। चूंकि कीटाणु इन कोशिकाओं की पकड़ से बच निकलने की कई रणनीतियां अपनाते हैं (या तो उनकी पहचान में नहीं आते या पकड़े नहीं जाते), इसलिए प्रतिरक्षा तंत्र कीटाणुओं की सतह को चिंहित करने के कई तरीके अपनाता है ताकि भक्षी कोशिकाएं उन्हें पहचान सकें और उन पर उपस्थित इन चिंहों का उपयोग उन्हें पकड़कर खाने के लिए कर सकें।

कॉम्प्लीमेंट ऐसा ही एक किरदार है यह एंज़ाइमी क्रियाओं की एक शृंखला होती है जिसके माध्यम से कीटाणु पर ऐसे चिंह चस्पा किए जाते हैं। सी-रिएक्टिव प्रोटीन भी ऐसी ही व्यवस्था है। ये दोनों ही बैक्टीरिया की सतह पर मौजूद कुछ आम आणविक आकारों को पहचानते हैं (जो स्तनधारी कोशिकाओं पर नहीं पाए जाते) और इनसे चिपक जाते हैं। कभी-कभी इस प्रक्रिया का परिणाम यह भी होता है कि बैक्टीरिया की सतह पर छिद्र हो जाते हैं और उसका विघटन शुरू हो जाता है। साथ ही फैगोसाइट इन्हें पहचानकर निगलना भी शुरू कर देते हैं।

यह देखा गया है कि कीटाणु कॉम्प्लीमेंट अथवा ऐसी ही अन्य तरकीबों से चिंहित होने से बच निकलते हैं क्योंकि वे उन रचनाओं को ही बदल डालते हैं जिनका उपयोग क्लोनल एकरूपी कोशिकाएं उन्हें पहचानने के लिए करती हैं। लिहाज़ा क्लोनल विविधरूपी प्रतिरक्षा ऐसे अनोखे प्रोटीन (एंटीबॉडी) बनाती है जो बैक्टीरिया वगैरह की सतह पर उपस्थित विविध रचनाओं को पहचानते हैं। ये एंटीबॉडी सामान्यत: खामोशी से विचरती रहती हैं, जब तक कि इनका सामना उस लक्ष्य से न हो जिसे पहचानने के लिए इन्हें डिज़ाइन किया गया है। जब सामना होता है तो वे लक्ष्य को दबोच लेती हैं (कभी-कभी अपनी दोनों भुजाओं से) और इस जुड़ाव का परिणाम यह होता है कि उन एंटीबॉडी की पूंछ की आकृति बदल जाती है जो कीटाणु को चिंहित कर देती है कि फैगोसाइट उसे निगलकर नष्ट कर दे।

दरअसल, जन्मजात व अनुकूली प्रतिरक्षा क्रियाविधियां आपस में अंतर्क्रिया के लिए एंटीबॉडी पर उपस्थित पूंछ की आकृति में इस परिवर्तन का उपयोग करती हैं। यह बदली हुई पूंछ गुंजाइश बनाती हैं कि कॉम्प्लीमेंट आकर उससे जुड़ जाएं ताकि फैगोसाइट्स को एक से अधिक संकेत मिलें।

एंटीबॉडी प्लाज़्मा की कोशिकाओं द्वारा निर्मित व स्रावित इम्यूनोग्लोब्यूलिन होते हैं। ये प्लाज़्मा कोशिकाएं बी-कोशिकाओं की परिपक्वता का आखिरी मुकाम होती हैं और उपयुक्त लक्ष्य से जुड़ती हैं। वास्तव में बी-कोशिकाएं इम्यूनोग्लोब्यूलिन को मुक्त करने की बजाय उनका उपयोग अपनी सतह के एक अणु के रूप में करती हैं। परिणाम यह होता है कि कोई लक्ष्य इस पर जुड़े तो बी-कोशिकाओं में कई तरह के परिवर्तन होने लगते हैं। इन परिवर्तनों की बदौलत वे ऐसी प्लाज़्मा कोशिकाओं में परिवर्तित हो जाती हैं जो उस इम्यूनोग्लोब्यूलिन को खून में छोड़ने लगती हैं।

कोशिका के अंदर बैठे घुसपैठिए

जो परजीवी आनन-फानन मेज़बान की कोशिकाओं के अंदर चले जाते हैं, वे एंटीबॉडी या कॉम्प्लीमेंट द्वारा चिंहित होने से बच जाते हैं और फैगोसाइट स्वयं तो उन्हें खाकर ठिकाने नहीं लगा सकते। तो प्रतिरक्षा तंत्र का दूसरा प्रमुख काम है कि अपनी ही उन कोशिकाओं को पहचाने जिनके अंदर परजीवी छिपे बैठे हैं। ऐसे संक्रमण से निपटने वाली प्रतिरक्षा कोशिकाएं (टी-कोशिकाएं) सिर्फ इतना नहीं कर सकतीं कि वे एंटीबॉडी बना दें क्योंकि ऐसे इम्यूनोब्लोब्यूलिन अणु संक्रमित कोशिकाओं के अंदर तो पहुंच नहीं पाएंगे। इसलिए इन टी-कोशिकाओं को संक्रमित कोशिकाओं को संकेत देना होते हैं। इसका मतलब है कि ये टी-कोशिकाएं मात्र संक्रमित कोशिकाओं को अपने लक्ष्य के रूप में पहचानें, न कि खून में बहते स्वतंत्र अणुओं को और अपने उत्पादों को किसी ऐसे स्थान पर न छोड़े जहां कोई संक्रमित कोशिका न हो।

यानी उन्हें एक साथ दो बातों की पहचान करनी होगी – परजीवी का पहचान चिंह और यह कि वह परजीवी-चिंह किसी कोशिका से जुड़ा है। यदि इन दो चीज़ों – यानी परजीवी अणु की पहचान और यह पहचान कि यह अणु किसी कोशिका से सम्बद्ध है – को एक-दूसरे से स्वतंत्र छोड़ दिया जाए तो होगा यह कि टी-कोशिकाएं किसी परजीवी-सम्बद्ध अणु को पहचान लेंगी जबकि वे किसी स्वस्थ कोशिका के संपर्क में हों। ऐसा होने पर वे शायद इस स्वस्थ कोशिका को मार डालेंगी।

इसलिए कोई ऐसी व्यवस्था होनी चाहिए कि टी-कोशिकाएं किसी परजीवी अणु को तभी पहचानें जब उसे किसी संक्रमित कोशिका ने तोड़-मरोड़ दिया हो और उसके अवशेष कोशिका सतह के किसी सामान्य अणु के साथ जोड़ दिए गए हों। इन वाहक अणुओं को मेजर हिस्टोकॉम्पेटेबिलिटी कॉम्प्लेक्स (एमएचसी) जीन द्वारा कोड किया जाता है और इसलिए इन्हें एमएचसी प्रोटीन कहते हैं। तो, कोशिका की सतह के एमएचसी प्रोटीन्स पर खुद मेज़बान के पेप्टाइडस भी होंगे और परजीवी के अवशिष्ट पेप्टाइड्स भी। इस प्रकार से कोई संक्रमित कोशिका इस बात का संकेत टी-कोशिकाओं को दे सकती है कि उसके अंदर कोई परजीवी है।

हालांकि ये पेप्टाइड्स परजीवी के प्रोटीन के विघटन से बनते हैं लेकिन इनकी आकृति मूल अणु से कदापि मेल नहीं खाती। इनको पहचानने के साथ-साथ ही एमएचसी प्रोटीन भी पहचाना जाना चहिए। इसलिए ऐसे ग्राहियों की आवश्यकता होती है जो एमएचसी और परजीवी से उत्पन्न पेप्टाइड्स दोनों को एक साथ पहचान सकें। और इन ग्राहियों से लैस टी-कोशिकाओं में यह क्षमता होनी चाहिए कि वे या तो संक्रमित कोशिका को मार सकें या उसकी मदद कर सकें कि वह अपने अंदर बैठे परजीवी को मार डाले।

टी-कोशिका थायमस नामक ग्रंथि में परिपक्व होती हैं। टी-कोशिकाएं मात्र सतह का मुआयना करके सामान्य कोशिका और संक्रमित कोशिका के बीच भेद कर सकती हैं। उन्हें कोशिका के अंदर झांकने की ज़रूरत नहीं होती। इसके बाद टी-कोशिकाएं जैविक रूप से सक्रिय विविध अणु बनाती हैं, जिन्हें सायटोकाइन्स कहते हैं। ये सायटोकाइन्स संक्रमित कोशिकाओं को उपयुक्त संकेत प्रेषित कर सकते हैं।

कोशिका के अंदर विभिन्न किस्म के संक्रमण

हम यह बात कर ही चुके हैं कि संक्रमित कोशिका के अंदर कुछ परजीवी बुलबुला अंगकों या एंडोसोम्स के अंदर विराजमान होते हैं। ऐसी कोशिकाओं को निर्देश दिया जा सकता है कि वे परजीवी को मारने के लिए कुछ कदम उठाएं – जैसे कुछ एंज़ाइम्स को सक्रिय कर दें या मुक्त मूलकों को तैनात कर दें। यह कदम उठाना इसलिए संभव हो सकता है क्योंकि परजीवी आम तौर पर भक्षी कोशिकाओं (जैसे मैक्रोफेज) में पहुंचते हैं और कोशिश करते हैं कि उनके एंडोसोम में सुरक्षित बैठे रहें।

दूसरी ओर वायरस जैसे परजीवी कोशिका द्रव्य पर कब्ज़ा करते हैं और इस मामले में एक ही रास्ता बचता है कि संक्रमित कोशिका को ही मार दिया जाए ताकि संक्रमण आगे न फैले।

तो यदि कोई टी-कोशिका किसी कोशिका की सतह पर ऐसा एमएचसी-सम्बद्ध परजीवी पेप्टाइड देखे जो एंडोसोम में से आया हो तो वह कोशिका को यह संदेश दे कि कीटाणु को मारो।

दूसरी ओर यदि उसे कोई एमएचसी सम्बद्ध परजीवी पेप्टाइड दिखे जिसकी उत्पत्ति कोशिका द्रव्य में हुई है तो उस कोशिका को संदेश दिया जाए कि वह मर जाए।

चूंकि ये दो सर्वथा अलग-अलग कार्य हैं, इसलिए ज़रूरी है कि इन्हें टी-कोशिकाओं की अलग-अलग किस्मों द्वारा संपादित किया जाए – पहले मामले में यह काम हेल्पर टी-कोशिकाएं करती हैं जबकि दूसरे मामले में किलर टी-कोशिकाएं। लेकिन कोशिका के बाहर से तो टी-कोशिकाएं सिर्फ एमएचसी-पेप्टाइड संकुल देखती हैं। तो उन्हें कैसे पता चलता है कि उस पेप्टाइड की उत्पत्ति कहां हुई थी।

इसका सबसे आसान तरीका यह होगा कि दो किस्म के एमएचसी अणु हों। एक अणु ऐसा हो जो कोशिका द्रव्य से पेप्टाइड उठाता हो और दूसरा जो एंडोसोम से। प्रतिरक्षा तंत्र ठीक यही करता है। पहले प्रकार को एमएचसी वर्ग I कहते हैं और दूसरे प्रकार को एमएचसी वर्ग II कहते हैं।

एमएचसी वर्ग I

सारे कोशिका प्रोटीन के समान एमएचसी वर्ग I के जिन प्रोटीन्स को कोशिका की सतह पर आना होता है, वे कोशिका की ट्यूबुलर प्रोटीन संश्लेषण मशीनरी – खुरदरा एंडोप्लाज़्मिक रेटिकुलम (RER) – में बनते हैं। निर्माण होते ही ये ङकङ की नलिका की सतह से चिपक जाते हैं। यहां पेप्टाइड-एमएचसी संकुल बनते हैं। इसके लिए आसपास पड़े उन पेप्टाइड्स का उपयोग किया जाता है जो ठीक से फिट हो जाएं। तो ये आसपास पड़े प्रोटीन आते कहां से हैं? जब किसी प्रोटीन का संश्लेषण हो और वह ठीक तरह से तह न बना पाए तो आम तौर पर उसे कोशिका द्रव्य में प्रोटिएसोम नामक मशीनरी द्वारा तोड़ दिया जाता है। इस प्रक्रिया में बने पेप्टाइड्स को एक विशेष प्रोटीन पंप द्वारा RER में धकेल दिया जाता है। इस प्रकार से प्रत्येक एमएचसी वर्ग I का अणु उस पेप्टाइड को लेकर सतह पर आ जाता है जिसके साथ वह पैदा हुआ था। चूंकि ये पेप्टाइड प्रोटिएसोम से आते हैं, इसलिए संभावना यही है कि इनमें से अधिकांश पेप्टाइड्स कोशिका द्रव्य से आए होंगे।

एमएचसी वर्ग II

एमएचसी वर्ग II के अणु भी इसी तरह बनते हैं लेकिन वे ङकङ में एक तीसरे प्रोटीन के साथ संयोजित होते हैं जिसे इनवेरिएन्ट चेन कहते हैं। यह प्रोटीन आसपास उपस्थित पेप्टाइड्स को नवनिर्मित एमएचसी वर्ग II अणुओं से जुड़ने नहीं देता। अब इनवेरिएन्ट चेन द्वारा इन अणुओं को एंडोसोम में ले जाया जाता है। एंडोसोम झिल्ली से घिरी कोशिका का एक अजीब विरोधाभास है। इस झिल्ली के घटक टूट-फूट के कारण क्षतिग्रस्त होते रहते हैं और इनकी जगह नए घटक बनाना पड़ते हैं। समस्या यह है कि कोशिका इन टुकड़ों को कैसे अंदर खींचकर उनका विघटन करे और उनकी जगह नए हिस्से चिपकाए। और इस प्रक्रिया में कोशिका की झिल्ली में कहीं दरार नहीं पड़नी चाहिए।

इसका समाधान काफी चतुराई भरा है। समाधान परिवहन बुलबुलों के रूप में किया गया है। कोशिका नई सतह को अपने अंदर बुलबुलों के रूप में बनाती है और उन्हें सतह तक ले जाकर पुरानी झिल्ली पर चिपका देती है। इस प्रक्रिया में बुलबुले के अंदर का पदार्थ कोशिका के बाहर फेंक दिया जाता है। कोशिका इस मार्ग (एक्सोसायटोसिस) का उपयोग तमाम किस्म के पदार्थों को बाहर फेंकने के लिए भी करती है। इसका उलट मार्ग भी होता है जिसे एंडोसायटोसिस कहते हैं जिसमें कोशिका झिल्ली के एक टुकड़े को एक बुलबुले के रूप में चिमटी की तरह अंदर खींचा जाता है और फिर उसे कचरा निपटान केंद्रों (लायसोसोम) में पहुंचा दिया जाता है जहां इसे रीसायकल किया जाता है। ऐसे एंडोसायटिक बुलबुलों के साथ थोड़ा बाहरी पदार्थ भी कोशिका के अंदर आ जाते हैं। इस प्रक्रिया को पिनोसायटोसिस या फैगोसायटोसिस कहते हैं। इस बुलबुले की झिल्ली और इसमें भरे बाहरी पदार्थों का विघटन एंडोसोम का अत्यंत अम्लीय और एंज़ाइम युक्त पर्यावरण करता है।

जब इनवेरिएन्ट चेन से जुड़ा एमएचसी वर्ग II अणु एंडोसोम में पहुंचता है तो इनवेरिएन्ट चेन को पचा लिया जाता है लेकिन स्वयं एमएचसी वर्ग II के अणु आसानी से पचाए नहीं जा सकते। अब इनवेरिएन्ट चेन से मुक्त एमएचसी वर्ग II के अणु पेप्टाइड से जुड़ सकते हैं। ज़ाहिर है इन पेप्टाइड्स की उत्पत्ति एंडोसोम में हुई होगी।

तो एमएचसी वर्ग I और II अपने साथ सतह पर अलग-अलग स्रोतों से उत्पन्न पेप्टाइड लेकर पहुंचते हैं।

परजीवी पेप्टाइड्स

यह ध्यान रखना ज़रूरी है कि प्रोटीन विघटन की मशीनरी परजीवी और कोशिकीय प्रोटीन के बीच कोई भेद नहीं करती। एमएचसी अणु भी इन दो तरह के पेप्टाइड्स में कोई भेद नहीं करते। दोनों किस्म के एमएचसी अणुओं की आकृति तब तक स्थिरता प्राप्त नहीं करती जब तक कि वे पेप्टाइड से न जुड़ जाएं। और असंक्रमित कोशिकाएं भी भरपूर मात्रा में एमएचसी अणु अपनी सतह पर प्रदर्शित करती हैं। इसलिए कोशिका की सतह पर प्रदर्शित अधिकांश एमएचसी अणु से जुड़े पेप्टाइड्स परजीवी नहीं बल्कि कोशिकीय उत्पत्ति के ही होते हैं।

परजीवी पहचान प्रणाली को पहले से उपस्थित कोशिकीय मरम्मत तंत्र (जो कोशिका में प्रोटीन के बनने-बिगड़ने से निपटने के लिए बना है) से जोड़ने का यही परिणाम है। लिहाज़ा संक्रमित कोशिका में भी अधिकांश एमएचसी अणु के साथ परजीवी से उत्पन्न नहीं बल्कि कोशिकीय उत्पत्ति के पेप्टाइड्स होने की ही संभावना है। अर्थात टी-कोशिकाओं की पहचान-क्रियाविधि इतनी संवेदनशील होनी चाहिए कि वह थोड़े से परजीवी-उत्पन्न पेप्टाइड से युक्त एमएचसी को भांप सके और साथ ही उसमें यह क्षमता भी बनी रहे कि वह विभिन्न पेप्टाइड्स के बीच भेद भी कर पाए। टी-कोशिकाएं अपनी संवेदनशीलता को बढ़ाने के लिए कई तरकीबों का उपयोग करती हैं।

लेकिन यदि टी-कोशिकाएं अपने प्रत्युत्तर में इतनी संवेदनशील हैं, तो वे टी-कोशिकाओं क्या करेंगी जो कोशिकीय पेप्टाइड-एमएचसी संकुल को पहचानती हैं? टी-कोशिकाओं का पहचान का खजाना काफी बेतरतीबी से निर्मित होता है और इसलिए ऐसी टी-कोशिकाओं को बनने से रोकना असंभव है जो कोशिकीय पेप्टाइड वाले एमएचसी अणुओं को लक्ष्य के रूप में पहचानें।

कोशिकाओं की सतह पर कोशिकीय उत्पत्ति के पेप्टाइड और एमएचसी अणुओं के संकुलों की भारी संख्या में मौजूदगी टी-कोशिकाओं की ‘स्व-प्रतिक्रिया’ (ऑटो-इम्यूनिटी) के ऐसे हादसों को एक वास्तविक खतरा बना देती है। यह अपने आप में चर्चा का विषय हो सकता है कि ऐसी ‘स्व-प्रतिक्रियाशील’ टी-कोशिकाओं का सफाया कैसे किया जाता है।

पूरा परिदृश्य और भी पेचीदा हो जाता है क्योंकि एमएचसी में बहुत विविधता अनिवार्य है। यदि कोई एमएचसी अणु किसी एक पेप्टाइड से अच्छी तरह जुड़ता है, तो वह अन्य पेप्टाइड्स से जुड़ने में नाकाम रहेगा। अर्थात एक एमएचसी अणु सारे संभव पेप्टाइड्स से नहीं जुड़ पाएगा। इसलिए एमएचसी अणुओं में खूब विविधता होनी चाहिए ताकि प्रतिरक्षा तंत्र के लिए अधिक से अधिक पेप्टाइड्स की पहचान करना संभव हो सके। अर्थात एमएचसी अणुओं के दोनों वर्गों में कई तरह के अणु होने चाहिए और ये सब एक साथ कोशिका की सतह पर प्रदर्शित होने चाहिए। लेकिन टी-कोशिका तो अपने क्लोनल विविधरूपी टी-कोशिका ग्राहियों (TCR) की मदद से मात्र एमएचसी अणु और उससे जुड़े पेप्टाइड को पहचानती है। तो क्या किसी टी-कोशिका को पता चल जाएगा कि वह जो एमएचसी अणु देख रही है वह वर्ग I का है या वर्ग II का।

उपयोगी टी-कोशिकाओं का चयन

इस वर्ग भेद को एक अलग दृष्टिकोण से देखते हैं। टी-कोशिकाओं द्वारा एमएचसी-पेप्टाइड संकुल को पहचानने का सिद्धांत और साथ में एमएचसी अणुओं में विविधता मिलकर प्रतिरक्षा तंत्र के खजाने के विकास के लिए एक बड़ी समस्या पेश करता है। जैसा कि हमने कहा था, इस खजाने का निर्माण बेतरतीब ढंग से होता है और परिणाम यह होता है कि तमाम किस्म की ‘आकृतियां’ बनकर तैयार हो जाती हैं। यह चीज़ बी-कोशिकाओं के संदर्भ में तो ठीक है क्योंकि उन्हें तो मात्र परजीवी लक्ष्यों की पहचान करनी है। लेकिन टी-कोशिकाओं के संदर्भ में घुसपैठी से प्राप्त पेप्टाइड की चाहे जितनी पहचान कर ली जाए लेकिन वह तब तक उपयोगी नहीं होगी जब तक कि यह पेप्टाइड किसी ऐसे एमएचसी अणु से जुड़ा न हो जो उस व्यक्ति में उपलब्ध हो। एक बेतरतीब ढंग से संख्या वृद्धि करती किसी भी आबादी में दोनों वर्गों के एमएचसी अणुओं के अनगिनत विविध सम्मिश्रण बन जाएंगे। और यह विविधता बढ़ती ही जाएगी। लेकिन बेतरतीब ढंग से बढ़ते टी-कोशिका भंडार में ऐसे कई ग्राही बनेंगे जिन्हें अपना लक्ष्य कभी देखने को नहीं मिलेगा। यानी ये कोशिकाएं उस व्यक्ति के लिए कभी उपयोगी नहीं होंगी। इसलिए टी-कोशिका खजाने में से ऐसी कोशिकाओं की छंटाई करनी पड़ेगी जो अपने लक्ष्य पेप्टाइड अणुओं की पहचान किसी ऐसे एमएचसी अणु पर करें जो शरीर में उपस्थित न हो। इसका मतलब है कि सिर्फ उन कोशिकाओं को रखा जाए जो संभवत: शरीर के लिए उपयोगी होंगी (हालांकि यह पक्का तय कर पाना मुश्किल है) और उन कोशिकाओं से छुटकारा पा लिया जाए जो निश्चित रूप से अनुपयोगी होंगी। इस प्रक्रिया को ‘सकारात्मक चयन’ कहा जाता है। विकास सम्बंधी निर्णय के इस पड़ाव पर टी-कोशिकाओं को यह निर्देश भी देना होता है कि उसका ग्राही किस वर्ग के एमएचसी अणु की पहचान कर रहा है ताकि वह या तो तो हेल्पर टी-कोशिका बन जाए अथवा किलर टी-कोशिका बने। तो प्रतिरक्षा तंत्र यह काम कैसे करता है?

टी-कोशिकाओं का सकारात्मक चयन

इस प्रक्रिया के घटकों को कैसे नियंत्रण में रखा जाए? कल्पना कीजिए कि कोई टी-कोशिका है जो (मान लीजिए) एमएचसी A से जुड़े पेप्टाइड X की पहचान करने वाली है। ऐसी स्थिति में वह एमएचसी A से तब भी जुड़ जाएगी (थोड़े दुर्बल ढंग से ही सही) जिस पर पेप्टाइड ज्ञ् हो। अत: विकासशील टी कोशिका को उस स्थिति में जीवित रहना चाहिए जब उसके ग्राही और उसके सूक्ष्म पर्यावरण में उपस्थित किसी एमएचसी अणु के बीच कुछ दुर्बल अंतर्क्रिया हो। यानी यदि सही एमएचसी अणु उपस्थित है, तो सही पेप्टाइड न होने पर भी, वह टी-कोशिका शायद उपयोगी साबित हो। उसे जीवित रहने का संदेश मिलेगा। अन्यथा सारी टी-कोशिकाओं में जन्मजात एक खुदकुशी का स्विच होता है।

अगली समस्या – यह सही है कि एमएचसी के दो वर्गों के अणु कोशिका द्रव्य और एंडोसोम से मिलने वाले पेप्टाइड के बीच भेद कर सकते हैं लेकिन टी-कोशिका के ग्राही को कैसे पता चलेगा कि वह किस वर्ग का एमएचसी अणु देख रहा है क्योंकि वह तो इन अणुओं की सिर्फ परिवर्ती शृंखला को देखता है? इसका सबसे सहज समाधान है कि इस ग्राही में एक वर्ग पहचान का तत्व जुड़ा हो। तो नवजात टी-कोशिकाएं बेतरतीबी से दो में से एक एमएचसी पहचान तत्व प्रदर्शित करती है – एक एमएचसी वर्ग I के लिए होता है (CD8) और दूसरा एमएचसी वर्ग II के लिए होता है (CD4)। CD8 प्रदर्शित करने वाली टी-कोशिकाएं (CD8 टी-कोशिकाएं) परिपक्व होकर किलर कोशिका बनेंगी जबकि CD4 वाली कोशिकाएं (CD4 टी-कोशिकाएं) हेल्पर बनेंगी।

अब यदि कोई विकसित होती टी-कोशिका जिसका ग्राही एमएचसी वर्ग I के अणु से दुर्बल ढंग से जुड़ता है और अपनी सतह पर CD8 प्रदर्शित करती है, तो CD8 और ग्राही साथ-साथ एमएचसी अणु से जुड़ जाएंगे और मिलकर उस कोशिका को पूर्ण जीवित रहने का संदेश देंगे जिसके दम पर वह कोशिका परिपक्व होकर किलर कोशिका में तबदील हो जाएगी। अलबत्ता, यदि इस विकसित होती टी-कोशिका पर एमएचसी वर्ग I का ग्राही है लेकिन वह CD4 प्रदर्शित करती है तो उसका ग्राही उसी एमएचसी अणु से नहीं जुड़ पाएगा जिसे CD4 पहचानता है। दूसरे शब्दों में, इस टी-कोशिका के संदर्भ में वर्ग-विशिष्ट सह-बंधन नहीं बन पाएगा। यह एक अपर्याप्त संदेश होगा और उस टी-कोशिका को मरना पड़ेगा। अर्थात CD4 और CD8 सह-ग्राही हैं जो एमएचसी वर्ग पहचान के लिए ज़रूरी हैं – सिर्फ वही कोशिकाएं जीवित रहेंगी जिनके ग्राही की एमएचसी वर्ग पहचान सह-ग्राही के साथ मेल खाती हो।

कोशिका में विराजमान परजीवी के विरुद्ध जन्मजात प्रतिरक्षा के तत्व

कोशिका के अंदर छिपकर बैठे परजीवियों की पहचान की उपरोक्त सारी पेचीदा रणनीतियों का सम्बंध अनुकूली प्रतिरक्षा के क्लोनल विविधतारूपी घटक से है। तो क्या ऐसी क्लोनल एकरूप कोशिकाएं होती ही नहीं हैं जो कोशिका में प्रवेश कर चुके परजीवियों को पहचान सके? ज़रूर हैं, और सबसे पहला नाम मैक्रोफेज का उभरता है। यह सही है कि विकल्पी अंतरा-कोशिका परजीवी मैक्रोफेज के अंदर भी जीवित रह सकते हैं लेकिन वैकासिक दबाव कुछ इस तरह काम करेगा कि ये मैक्रोफेज अपने अंदर घुसकर बैठे कुछ परजीवियों को CD4 किलर कोशिकाओं की मदद के बगैर भी मार डालेंगी।

अलबत्ता, इस संदर्भ में वास्तविक किरदार तो तथाकथित प्राकृतिक किलर (NK) कोशिकाएं हैं। पहले NK कोशिकाओं के बारे में माना गया था कि ये ट्यूमर कोशिकाओं को मारती हैं, चाहे उनसे इनका संपर्क पहले कभी न हुआ हो। लेकिन हमने कहा था कि कैंसर से सुरक्षा संभवत: प्रतिरक्षा रक्षा तंत्र के विकास की प्रमुख चालक शक्ति नहीं रही है। तो सवाल है कि क्या NK कोशिकाएं संक्रमण के संदर्भ में कोई भूमिका निभाती हैं? जवाब है कि कम से कम कुछ वायरस संक्रमणों के मामले में इन कोशिकाओं की अनुपस्थिति का परिणाम ज़्यादा गंभीर व लंबे संक्रमण के रूप में सामने आता है। और NK कोशिकाएं वायरस-संक्रमित कोशिकाओं को उसी तरह से मारती हैं जैसे किलर CD8 टी-कोशिकाएं मारती हैं।

लेकिन हम कहते आए हैं कि किलर टी-कोशिकाओं को संक्रमित कोशिका की सतह पर पेप्टाइड्स से जुड़े एमएचसी वर्ग I के अणु को लक्ष्य के रूप में पहचानना होता है और यह इसलिए संभव हो पाता है क्योंकि किलर टी-कोशिकाएं क्लोनल विविधता से बनती हैं। अब यदि NK कोशिकाएं क्लोनल एकरूप हैं तो वे किस तरह के आणविक लक्ष्य को पहचानती हैं?

यहां रणनीति यह होती है कि कोशिका की सतह पर कुछ ऐसे परिवर्तनों को भांपा जाए जो अधिकांश वायरस संक्रमणों में एक जैसे होते हैं। एक तरीका यह है कि जिन कोशिकाओं की प्रोटीन निर्माण मशीनरी का अपहरण हो गया है, उनके बारे में माना जाए कि वे संक्रमित हैं और उन्हें मरना चाहिए। सतह को देखकर कैसे पता चले कि किसी कोशिका की प्रोटीन मशीनरी खुद के प्रोटीन नहीं बना रही है?

एक तरीका है कुछ मार्कर प्रोटीन्स के स्तर का आकलन करना। ऐसा प्रतीत होता है कि NK कोशिकाएं सतह पर एमएचसी वर्ग I के अणुओं का स्तर देखती हैं। यदि स्तर ऊंचा है तो NK कोशिका उस कोशिका को ‘असामान्य’ चिंहित करके मार डालेंगी। इसका मतलब है कि NK कोशिकाओं को भी प्रशिक्षित करना होगा कि एमएचसी वर्ग I के अणुओं के किस स्तर को स्वीकार्य मानें। अर्थात चयन की प्रक्रिया क्लोनल एकरूप कोशिकाओं के संदर्भ में भी चलती है। दरअसल, इस बात के संकेत मिले हैं कि NK कोशिकाएं शायद पूरी तरह एकरूप नहीं होतीं बल्कि उनमें कुछ विविधता होती है। अलबत्ता यह विविधता शायद उस स्तर की नहीं है जैसी अनुकूली प्रतिरक्षा में पाई जाती है। अनुकूली प्रतिरक्षा में तो ऐसे कृत्रिम अणुओं को पहचानने की क्षमता भी होती है जो पहले कभी अस्तित्व में भी न रहे हों।

अगला सवाल यह है कि टी-कोशिकाओं का ऐसा अनंत खजाना कैसे बनाया जाता है।  (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://2rdnmg1qbg403gumla1v9i2h-wpengine.netdna-ssl.com/wp-content/uploads/sites/3/2016/11/immuneSystem-1190000241-770×553-1-650×428.jpg