प्रतिरक्षा व्यवस्था और शरीर की हिफाज़त – 5 – विनीता बाल, सत्यजीत रथ

सचमुच अनंत खज़ाना कैसे बनता है?

प्रतिरक्षा तंत्र उन तालों की चाभियां कैसे बनाता है, जिन्हें उसने पहले कभी न देखा हो? और यह कैसे सुनिश्चित करता है कि हर किरदार के पास एक अनोखी चाभी हो?

प्रतिरक्षा तंत्र की अंतहीन विविधता

हमने पिछली बार बात की थी प्रतिरक्षा तंत्र के लिए एक सचमुच खुले खज़ाने के निर्माण की। अब तक हमने जो बातें की हैं उनसे तो जीन्स के पुन:संयोजन के करतबों से मात्र एक काफी बड़े खज़ाने के निर्माण तक पहुंच पाए हैं। वास्तव में एक अनंत खज़ाना बनाने का एकमात्र तरीका तो यही होगा कि प्रतिरक्षा ग्राहियों की प्रत्येक शृंखला के परिवर्ती क्षेत्र बनाने वाले VDJ या VJ एक्सॉन में उत्परिवर्तन की मदद ली जाए। भेड़ जैसे कुछ प्राणि ऐसा करते भी हैं और मुर्गों जैसे कुछ जीव इस विधि का थोड़ा परिवर्तित रूप इस्तेमाल करते हैं।

अलबत्ता, माइस (एक किस्म का चूहा, जिसके प्रतिरक्षा तंत्र का सर्वाधिक अध्ययन किया गया है) और मनुष्य इसकी बजाय एक ज़्यादा आसान जुगाड़ का सहारा लेते हैं। सबसे पहले तो वे V, D और J मिनी-जीन्स को जोड़ने में एक बुनियादी पुनर्मिश्रण मशीनरी का उपयोग करते हैं। यह मशीनरी जोड़े जाने वाले दो जीन्स को पंक्तिबद्ध कर देती है। पंक्तिबद्ध करने में वह पहचान व सीध मिलाने के लिए अनुक्रम पहचान का उपयोग करती है। प्रत्येक मिनी-जीन के कोडिंग क्षेत्र के नज़दीक एक चिंह होता है जो दो संरक्षित अनुक्रमों से बना होता है – एक हैप्टोमर (7 क्षार) और एक नैनोमर (9 क्षार)। ये एक-दूसरे से 12 अथवा 23 क्षारों की दूरी पर होते हैं। सीध मिलाने की क्रियाविधि ऐसी है कि 7-12-9 संकेत चिंह सिर्फ 7-23-9 संकेत चिंह से जुड़ सकता है। चूंकि V और J दोनों भारी शृंखला मिनी-जीन्स पर एक ही किस्म के संकेत-चिंह होते हैं, इसलिए यह व्यवस्था सुनिश्चित कर देती है कि वे भारी शृंखला में D मिनी-जीन को छोड़कर गलती से भी एक-दूसरे से नहीं जुड़ेंगे।

विविधता उत्पन्न करने का अगला जुगाड़ इस तथ्य पर टिका है कि VDJ को जोड़ते समय पुनर्मिश्रण की घटना में डीएनए दोहरी कुंडली में से एक सूत्र को काटना अनिवार्य होता है। इसके चलते कोशिकीय रख-रखाव की इस मशीनरी को मौका मिल जाता है कि कटे हुए सूत्र का उपयोग करते हुए दूसरे सूत्र को भी तोड़ दे और फिर दोनों सिरों को जोड़कर एक हेयरपिन जैसा छल्ला बना दे। तो अब पुनर्मिश्रण की मशीनरी डीएनए के इन दो हेयरपिन छल्लों को पकड़ लेती है – प्रत्येक मिनी-जीन का एक छल्ला – और उन्हें पास-पास लाकर सिल देती है। सिलने के बाद वह इन्हें फिर से काटकर खोल देती है। इस काटने की वजह से वह छल्ला दूसरी बार जहां से खुलता है वह मूल स्थान से अलग होता है। तो अब डीएनए के दो सूत्र एक ही बिंदु पर समाप्त नहीं होते। वास्तव में एक दूसरे की अपेक्षा थोड़ा आगे तक लटका होता है। यह बाहर लटकता टुकड़ा डीएनए सफाई करने वाले एंज़ाइम्स (एक्सोन्यूक्लिएज़) के प्रति बहुत संवेदनशील होता है। ये एंज़ाइम तत्काल इनका मुंह पकड़कर इन्हें चबाना शुरू कर देते हैं। कई बार जोश में आकर वे बाहर लटकते हिस्से से भी अधिक चबा डालते हैं। ज़ाहिर है, यह प्रक्रिया जुड़ाव बिंदु पर डीएनए के अनुक्रम को इस तरह बदल देती है, जैसा जीनोम के द्वारा अपेक्षित नहीं था। दूसरे शब्दों में, अब जीनोम सांचे से इतर बेतरतीबी VDJ एक्सॉन में शामिल हो चुकी है।

एक अन्य रख-रखाव एंज़ाइम (टर्मिनल डीऑक्सीन्यूक्लियोटाइड ट्रांसफरेज़) डीएनए में से क्षारों को इस तरह हटा सकता है जो मूल योजना का हिस्सा नहीं था। यह एंज़ाइम अनुक्रम को और बदल देता है।

क्या बी-कोशिका और टी-कोशिका ग्राही विविधता में कुछ पैटर्न हैं?

हमने बात की थी कि बी-कोशिकाएं और टी-कोशिकाएं अपने लक्ष्यों को अलग-अलग ढंग से पहचानती हैं। बी-कोशिका के ग्राही सारे लक्ष्यों को पहचानते हैं और उनमें कोई स्थान-आधारित रुकावट नहीं होती। दूसरी ओर, टी-कोशिकाएं किसी लक्ष्य को तभी पहचानती हैं जब वह किसी कोशिका की सतह पर एमएचसी प्रोटीन से जुड़ा कोई पेप्टाइड हो। ज़ाहिर है, इन एमएचसी प्रोटीन्स में बहुत अधिक विविधता नहीं होगी। हमने कहा भी था कि मात्र उन टी-कोशिकाओं को चुना जाता है जो शरीर में उपलब्ध एमएचसी प्रोटीन से सम्बद्ध अज्ञात पेप्टाइड को पहचान पाए। इस प्रक्रिया को सकारात्मक चयन कहते हैं।

तो बी- एवं टी-कोशिकाओं के ग्राहियों के विभिन्न खंडों में विविधता का इससे क्या सम्बंध है?

स्पष्ट है कि बी-कोशिकाओं के ग्राहियों के सारे हिस्सों में काफी विविधता की ज़रूरत होगी क्योंकि ग्राही के सारे घटकों का संपर्क लक्ष्यों के निहायत विविध आकारों से होने की संभावना है। इसके विपरीत टी-कोशिका ग्राहियों के जो हिस्से एमएचसी अणु से संपर्क बनाएं उनमें उतनी विविधता की ज़रूरत नहीं है जितनी कि उस हिस्से में जो पेप्टाइड के संपर्क में आएगा।

तो टी-कोशिकाओं के ग्राहियों के निर्माण में VDJ मिनी-जीन हिस्सों का योगदान कितना है (जो सांचे के रूप में काम करते हैं) और जोड़ वाले हिस्सों का क्या योगदान है जो गैर-सांचा गत ढंग से काम करते हैं? रोचक बात है कि टी-कोशिका ग्राही के वे हिस्से जो पेप्टाइड के संपर्क में आते हैं, उनका कोडिंग गैर-सांचागत विविधता-जनक हिस्से में होता है। V, D और J जीन्स में विविधता स्वाभाविक रूप से V, D और J समूहों में उपलब्ध वैकल्पिक समूहों से आती है। यहां, टी-कोशिका ग्राहियों के लिए उपलब्ध संख्या कहीं कम होती है, बनिस्बत बी-कोशिका ग्राहियों के। इससे एक बार फिर यह बात रेखांकित होती है कि पेप्टाइड के संपर्क में आने वाले ग्राहियों की अपेक्षा एमएचसी प्रोटीन्स के संपर्क में आने वाले टी-कोशिका ग्राहियों में विविधता काफी कम होती है। दूसरी ओर, बी-कोशिका ग्राहियों के लिए मिनी-जीन्स के विकल्पों की संख्या बहुत अधिक होती है क्योंकि उन्हें बहुत अधिक कुल विविधता की ज़रूरत होती है। यानी पूरी व्यवस्था में न सिर्फ विविधता बढ़ाने का इंतज़ाम है बल्कि उन हिस्सों में विविधता और अधिक बढ़ाने का इंतज़ाम है जहां इसकी ज़्यादा ज़रूरत हो।

प्रत्येक कोशिका पर एक ही ग्राही होता है जबकि गुणसूत्र दो होते हैं

लक्ष्य-पहचान के क्लोनल विविधरूपी मॉडल के फायदों की बात करते हुए हमने कहा था कि बेहतर होगा यदि प्रत्येक कोशिका पर एक ही लक्ष्य का ग्राही हो ताकि अनजाने में लक्ष्य-पहचान में कोई घालमेल न हो। लेकिन यदि ग्राही शृंखला बनाने के लिए VDJ सम्मिश्रण होना है तो जब प्रत्येक कोशिका में गुणसूत्रों की दो प्रतिलिपियां होती हैं तो प्रत्येक कोशिका पर दो ग्राही शृंखलाएं क्यों नहीं बन जाती?

इसके दो समाधान हैं। एक तो यह कि पूरी प्रक्रिया बेतरतीबी से चलती है, इसलिए संयोगवश हो सकता कि दो में से एक शृंखला ऐसी बने जो निरर्थक हो। दरअसल, इसकी वजह से ही कई बी- और टी-कोशिकाएं नाकाम रहती हैं और मर जाती हैं। इसका मतलब है कि इन कोशिकाओं को बनाने की प्रक्रिया में काफी बरबादी निहित है।

एक ही कोशिका पर दो ग्राही नहीं बनने देने का एक तरीका यह है कि दोनों ग्राहियों को परस्पर होड़ करने दी जाए। जो शृंखला पहले बन जाए वह दूसरी शृंखला के निर्माण की प्रक्रिया को रोक दे।

अलबत्ता, ये दोनों ही प्रक्रियाएं पूर्ण रूप से कारगर नहीं हैं। ऐसी कई बी- व टी-कोशिकाएं होती हैं जिन पर दो-दो पहचान-ग्राही होते हैं। ये प्रतिरक्षा गफलत की वाहक होती हैं, खासकर यदि किसी कोशिका पर एक ग्राही ऐसा हो जो शरीर के अपने किसी अणु को पहचानता हो। लेकिन इस मसले को तब संभाल लिया जाता है जब उन कोशिकाओं को नष्ट किया जाता है जो शरीर के अपने अणु को प्रतिरक्षा-लक्ष्य के रूप में पहचानती हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://2rdnmg1qbg403gumla1v9i2h-wpengine.netdna-ssl.com/wp-content/uploads/sites/3/2016/11/immuneSystem-1190000241-770×553-1-650×428.jpg

प्रातिक्रिया दे