व्हेल में भक्षण की छन्ना विधि कैसे विकसित हुई

ब्लू व्हेल और उसके नज़दीकी रिश्तेदार ही चंद ऐसे जीव हैं जो भोजन प्राप्त करने के लिए बेलीन का उपयोग करते हैं। बेलीन केरेटीन नामक पदार्थ की कंघीनुमा रचनाएं है जिनकी मदद से व्हेल अपना सूक्ष्मजीव भोजन हासिल करती है। ये व्हेल करती यह हैं कि पानी में मुंह खोलकर ढेर सारा पानी मुंह में भर लेती हैं और फिर बेलीन को बंद करके पानी को बाहर फेंकती हैं। पानी तो निकल जाता है लेकिन छोटेछोटे जीव अंदर रह जाते हैं जो व्हेल का भोजन बन जाते हैं। एक तरह से बेलीन छानकर भोजन प्राप्त करने का एक तरीका है।

वैसे व्हेल के शुरुआती पूर्वजों में आज की किलर व्हेल की तरह दांत होते थे। वैज्ञानिक इस गुत्थी को सुलझाने की कोशिश कर रहे थे कि व्हेल में बेलीन कैसे विकसित हुए। एक परिकल्पना यह है कि बेलीन का विकास दांतों से ही क्रमिक रूप से हुआ है। जैसे कि वाशिंगटन में मिले 3 करोड़ वर्ष पुराने व्हेल के एक जीवाश्म के अध्ययन के मुताबिक इनमें पैने, बागड़नुमा दांत थे। इनके बीच में थोड़ी जगह खाली होती थी, जिससे वे भोजन अलग करती होंगी। एक अन्य परिकल्पना के अनुसार व्हेल कुछ समय तक भोजन प्राप्त करने के लिए दांतों और बेलीन दोनों का उपयोग करती रही होंगी।

मगर हाल ही में कशेरुकी जीवाश्म विज्ञान की वार्षिक बैठक में प्रस्तुत व्हेल की एक लगभग समूची खोपड़ी के जीवाश्म का विश्लेषण प्रस्तुत किया गया जो इन दोनों परिकल्पनाओं को झुठला देता है।

जॉर्ज मेसन विश्वविद्यालय के पुराजीव वैज्ञानिक कार्लोस पेरेडो और उनके साथी मार्क उहेन कहना है कि ओरेगन में 1970 के दशक में मिले व्हेल के जीवाश्म के अध्ययन से पता चलता है कि पहले व्हेल ने अपने दांत गंवा दिए थे और बाद में स्वतंत्र रूप से उनमें बेलीन विकसित हुए। ये दो संरचनाएं कभी साथसाथ नहीं रहीं।

शोधकर्ताओं ने 3 करोड़ साल पुरानी व्हेल की खोपड़ी के अंदर वाले हिस्से का सीटी स्कैन किया। इसमें ना तो उन्हें दांत मिले और ना ही बेलीन को सहारा देने वाली हड्डी। मगर और बारीकी से अध्ययन करने पर पाया कि इसमें भोजन हासिल करने का अलग ही तंत्र मौजूद था: चूषण तंत्र।

पहले तो उन्हें इस बात पर यकीन नहीं हुआ किंतु खोपड़ी के आकार ने बात साफ कर दी। खोपड़ी का यह आकार शक्तिशाली मांसपेशियों को सहारा देता होगा जो चूसने में मददगार रही होंगी। पूरी बात की पुष्टि इस आधार पर हुई कि यह जीवाश्म दांत वाली व्हेल और बेलीन वाली व्हेल के बीच के समय का है। अर्थात बेलीन के विकास से पहले व्हेल अपने दांत गंवा चुकी थी।

मोनाश यूनिवर्सिटी के वैकासिक जीवाश्म विज्ञानी एलिस्टेयर इवांस का कहना है कि वे भी ऐसे ही निष्कर्ष पर पहुंचे थे। उन्होंने 2016 में दांत वाली बेलीन व्हेल पर अध्ययन किया था। इस अध्ययन के अनुसार व्हेल अपने दांतों की जगह चूसकर भोजन ग्रहण करती थी। उनका कहना है कि ओरेगन में मिला व्हेल का जीवाश्म हमारे अनुमान को पुख्ता करता है। और बेलीन के विकास की कड़ी जोड़ता है। उनके अनुसार बेलीन का विकास अधिक भोजन हासिल करने के लिए हुआ है। पेरेडो का कहना है कि यह लगभग 2.3 करोड़ वर्ष पूर्व हुआ होगा। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit :https://www.sciencemag.org/sites/default/files/styles/inline__450w__no_aspect/public/bluewhale_16x9.jpg?itok=T6GxR2is

सीने में छुपा पक्षियों की मधुर आवाज़ का राज़

कई पक्षियों की मधुर आवाज़ उनके सीने में छुपे एक रहस्यमयी अंग से आती है जिसे सिरिंक्स कहते हैं। वैज्ञानिकों का कहना है कि जैव विकास की प्रक्रिया में सिरिंक्स केवल एक बार विकसित हुआ है और यह विकास से सर्वथा नवीन रचना के निर्माण का दुर्लभ उदाहरण है क्योंकि अन्य किसी सम्बंधित जीव में ऐसी कोई रचना नहीं पाई जाती जिससे सिरिंक्स विकसित हो सके।

सरीसृप, उभयचर और स्तनधारी सभी में ध्वनि के लिए लैरिंक्स होता है जो सांस नली के ऊपरी हिस्से में होता है। इसके ऊतकों की तहों (वोकल कॉर्ड) में कम्पन्न से मनुष्यों की आवाज़, शेर की दहाड़ या सुअरों के किंकियाने की आवाज़ पैदा होती है। पक्षियों में भी लैरिंक्स होता है। लेकिन ध्वनि निकालने के लिए वे इस अंग का उपयोग नहीं करते। वे सिरिंक्स का उपयोग करते हैं। सिरिंक्स सांस नली में थोड़ा नीचे की ओर वहां स्थित होता है जहां सांस नली दो भागों में बंटकर अलगअलग फेफड़ों की ओर जाती है।

टेक्सास विश्वविद्यालय की जीवाश्म विज्ञानी जूलिया क्लार्क और उनका समूह जानना चाहता था कि पक्षियों में यह विचित्र अंग कैसे विकसित हुआ। उन्होंने आधुनिक सरीसृपों और पक्षियो में सिरिंक्स और लैरिंक्स के विकास की तुलना की। उन्होंने पाया कि ये दोनों अंग बहुत अलग हैं। वोकल कॉर्ड के काम करने के लिए लैरिंक्स उसकी उपास्थि से जुड़ी मांसपेशियों पर निर्भर होता है। लेकिन सिरिंक्स उन मांसपेशियों पर निर्भर करता है जो अन्य जानवरों में जीभ के पीछे से हाथों को जोड़ने वाली हड्डियों से जुड़ी रहती हैं। अब तक यह माना जाता था कि दोनों अंग की संरचना समान है। ये दोनों अंग अलगअलग तरह से विकसित हुए हैं। लैरिंक्स मेसोडर्म और न्यूरल क्रेस्ट कोशिकाओं से बनता है, जबकि सिरिंक्स सिर्फ मेसोडर्म कोशिकाओं से बनता है।

क्लार्क और उनके साथियों का अनुमान है कि आधुनिक पक्षियों के पूर्वजों में लैरिंक्स मौजूद था। पक्षियों के आधुनिक रूप में आने के समय फेफड़ों के ठीक ऊपर श्वासनली की उपास्थि ने फैलकर सिरिंक्स का रूप ले लिया। हो सकता है कि इस प्रसार ने श्वासनली को अतिरिक्त सहारा दिया होगा। अंतत: इसमें मांसपेशियों के छल्ले विकसित हुए जिससे ध्वनि पैदा होती है। धीरेधीरे ध्वनि उत्पादन का काम लैरिंक्स से हटकर सिरिंक्स के ज़िम्मे आ गया। सिरिंक्स विभिन्न तरह की ध्वनि निकालने के लिए अधिक उपयुक्त भी है। सिरिंक्स की एक खासियत यह है कि यह दो भागों से बना है और पक्षी एक साथ दो तरह की ध्वनियां निकाल सकते हैं।

क्लार्क और उनके सहयोगियों ने अपने निष्कर्ष गत दिनों प्रोसीडिंग्स ऑफ दी नेशनल एकेडमी ऑफ साइंसेज में प्रकाशित किए हैं। सिरिंक्स विकास में एकदम नई संरचना है जिसमें पहले से मौजूद विशेषताओं या संरचनाओं से जुड़ी कोई स्पष्ट कड़ी नहीं हैं। शोधकर्ताओं का कहना है कि यह अध्ययन अन्य जीवों, जैसे कछुओं और मगरमच्छों की ध्वनि संरचना समझने में मददगार साबित हो सकता है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://topyaps.com/wp-content/uploads/2013/10/The-Asian-Koel.jpg

सबसे बड़ा जीव 770 हैक्टर बड़ा है

1980 के दशक के अंत में, शोधकर्ताओं ने मिशिगन के ऊपरी प्रायद्वीप पर एक विशालकाय फफूंद की खोज की थी। आर्मिलेरिया गैलिका नामक यह फफूंद आकार में किसी मॉल के बराबर थी और 37 हैक्टर क्षेत्र में फैली थी। इसे दुनिया का सबसे बड़ा जीव माना गया। लेकिन हाल में वैज्ञानिकों ने एक और आर्मिलेरिया गैलिका फफूंद खोजी है जो पिछली खोज से लगभग चार गुना बड़ी और उससे दुगनी उम्र की है। यह फफूंद हनी मशरूम को जन्म देती है।

अन्य फफूंद की तरह आर्मिलेरिया पतले भूमिगत धागों के रूप में पनपती है। लेकिन अधिकांश फफूंद के विपरीत, ये धागे जूते के फीतों जैसी मोटीमोटी रस्सियां बना लेते हैं जो मृत या कमज़ोर लकड़ी का उपभोग करते हुए काफी दूरी तक फैलते जाते हैं। विशाल भूमिगत नेटवर्क का पता लगाने के लिए वैज्ञानिकों ने दूर तक फैले 245 ऐसे रेशों के नमूनों का जेनेटिक विश्लेषण किया।  बायोआरकाईव में प्रकाशित पर्चे के अनुसार इस जांच में पाया गया कि ये दूरदूर फैले रेशे एक ही फफूंद के हिस्से थे। इसके तेज़ी से बढ़ने के आधार पर अनुमान लगाया गया कि यह फफूंद कम से कम 2500 वर्ष पुरानी है।

शोधकर्ताओं ने 15 समान रूप से वितरित नमूनों के जीनोम को अनुक्रमित करके देखा कि हनी मशरूम में समय के साथ बदलाव कैसे होता है। उन्हें जीनोम के 10 करोड़ क्षारों में से केवल 163 आनुवंशिक परिवर्तन देखने को मिले जो काफी धीमी गति है। उत्परिवर्तन की दर से यह पता लगाया जाता है कि एक जीव कितनी तेज़ी से विकसित हो सकता है। शोधकर्ता उत्परिवर्तन की इतनी धीमी दर को लेकर असमंजस में हैं और अभी यह नहीं कह सकते कि उत्परिवर्तनों पर अंकुश कैसे लगाया जा रहा है। वैसे उन्हें लगता है कि एक भलीभांति विकसित डीएनए मरम्मत की व्यवस्था या फिर भूमिगत रहते हुए सूरज की रोशनी से दूर रहना उत्परिवर्तन की धीमी दर का एक कारण हो सकता है।

यह अब दुनिया का सबसे पुराना और सबसे बड़ा जीव है जिसकी उम्र 8000 वर्ष से भी अधिक है और यह 770 हैक्टर के लंबेचौड़े क्षेत्र में फैला है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/inline__450w__no_aspect/public/fungus_16x9_0.jpg?itok=Et5S_BIX

खरपतवारनाशी – सुरक्षित या हानिकारक

ग्लायफोसेट, दुनिया में सबसे अधिक इस्तेमाल किया जाने वाला खरपतवारनाशी यानी हर्बीसाइड है। ऐसा बताया गया था कि यह जंतुओं के लिए हानिकारक नहीं है। लेकिन शायद यह मधुमक्खियों के लिए घातक साबित हो रहा है। यह रसायन मधुमक्खियों के पाचन तंत्र में सूक्ष्मजीव संसार को तहस-नहस करता है, जिसके चलते वे संक्रमण के प्रति अधिक संवेदनशील हो जाती हैं। इस खोज के बाद दुनिया में मधुमक्खियों की संख्या में गिरावट की आशंका और भी प्रबल हो गई है।

ग्लायफोसेट कई महत्वपूर्ण एमिनो अम्लों को बनाने वाले एंज़ाइम की क्रिया को रोककर पौधों को मारता है। जंतु तो इस एंज़ाइम का उत्पादन नहीं करते हैं, लेकिन कुछ बैक्टीरिया द्वारा अवश्य किया जाता है।

टेक्सास विश्वविद्यालय की एक जीव विज्ञानी नैंसी मोरन ने अपने सहकर्मियों के साथ एक छत्ते से लगभग 2000 मधुमक्खियां लीं। कुछ को चीनी का शरबत दिया और अन्य को चीनी के शरबत में मिलाकर ग्लायफोसेट की खुराक दी गई। ग्लायफोसेट की मात्रा उतनी ही थी जितनी उन्हें पर्यावरण से मिल रही होगी। तीन दिन बाद देखा गया कि ग्लायफोसेट का सेवन करने वाली मधुमक्खियों की आंत में स्नोडग्रेसेला एल्वी नामक बैक्टीरिया की संख्या कम थी। लेकिन कुछ परिणाम भ्रामक थे। ग्लायफोसेट का कम सेवन करने वाली मक्खियों की तुलना में जिन मधुमक्खियों ने अधिक का सेवन किया था उनमें 3 दिन के बाद अधिक सामान्य दिखने वाले सूक्ष्मजीव संसार पाए गए। शोधकर्ताओं को लगता है कि शायद बहुत उच्च खुराक वाली अधिकांश मधुमक्खियों की मृत्यु हो गई होगी और केवल वही बची रहीं जिनके पास इस समस्या से निपटने के तरीके मौजूद थे।

मधुमक्खी में सूक्ष्मजीव संसार में परिवर्तन घातक संक्रमण से बचाव की उनकी प्रक्रिया को कमजोर बनाते हैं। परीक्षणों में ग्लायफोसेट का सेवन करने वाली केवल 12 प्रतिशत मधुमक्खियां ही सेराटिया मार्सेसेंस के संक्रमण से बच सकीं। सेराटिया मार्सेसेंस मधुमक्खियों के छत्तों में पाए जाने वाले आम जीवाणु हैं। दूसरी ओर, ग्यालफोसेट से मुक्त 47 प्रतिशत मधुमक्खियां ऐसे संक्रमण से सुरक्षित रहीं।

प्रोसीडिंग्स ऑफ दी नेशनल एकेडमी ऑफ साइंसेज़ जर्नल में प्रकाशित इस शोध ने मधुमक्खियों की तादाद में कमी के लिए एक संभावित कारण और जोड़ दिया है।

यह खोज मानव तथा जंतुओं पर ग्लायफोसेट के प्रभाव पर भी सवाल उठाती है। क्योंकि मानव आंत और मधुमक्खी की आंत में सूक्ष्म जीवाणुओं की भूमिका में कई समानताएं हैं। इस खोज ने विवादास्पद खरपतवारनाशी को दोबारा से शोध का विषय बना दिया है।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit :  https://www.sciencemag.org/sites/default/files/styles/inline__450w__no_aspect/public/bees_16x9_1.jpg?itok=utmJr-HM

 

 

आंखों के आंसू पीता पतंगा

नवंबर 2017 में नेशनल इंस्टीट्यूट ऑफ अमेज़ोनियन रिसर्च, ब्राज़ील के पारिस्थितिकी विज्ञानी लिएंड्रो मोरास को मध्य अमेज़ोनिया में अपने एक शोध के दौरान कुछ विचित्र दिखा। एक काली ठोढ़ी वाली एंटबर्ड (Hypocnemoides melanopogon) पेड़ की एक डाल पर आराम से बैठी हुई थी। उसकी गर्दन के पीछे इरेबिड मॉथ (Gorgone macarea) था। यह पतंगा (मॉथ) एंटबर्ड की आंख में कुछ देख रहा था और ऐसा लग रहा था कि उसकी आंखों से कुछ पी रहा है। इसके लगभग 45 मिनट बाद उन्होंने एक और पतंगे को एक अन्य एंटबर्ड की आंख से आंसू पीते देखा।

कुछ तितलियां और मधुमक्खियां अन्य जानवरों के आंसू पीती हैं। तितलियां किनारों पर धूप सेंकते मगरमच्छों के आंसू पीती हैं और मधुमक्खी कछुओं के। किंतु कीट द्वारा फुर्ती से उड़ने वाले पक्षियों के आंसू पीना थोड़ा विचित्र था। शोधकर्ता का अनुमान है कि रात में जब पक्षियों की चयापचय क्रिया धीमी हो जाती है तब निशाचर पतंगे उनके आंसू पीते हैं। आराम से बैठी एंटबर्ड की आंखों से आंसू पीने की प्रक्रिया के दौरान ये उसके आराम में खलल पैदा नहीं करते, बल्कि एक सुरक्षित दूरी बनाए रखते हैं।

शोधकर्ताओं ने इकॉलॉजी पत्रिका में बताया कि पतंगों को इस पक्षी के आंसुओं से सोडियम, प्रोटीन जैसे कुछ पोषक तत्व मिलते होंगे। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.miamiherald.com/news/nation-world/world/article219027370.html

अंडों का आकार कैसे तय होता है?

अंडे विविध आकारों के होते हैं एकदम गोल से लेकर शंकु तथा अंडाकार तक। यह सवाल वैज्ञानिक काफी समय से पूछते आ रहे हैं कि अंडों के आकार में इतनी विविधता क्यों है और किसी प्रजाति के पक्षियों के अंडे के आकार पर किन बातों का असर पड़ता है।

पिछले वर्ष प्रिंसटन विश्वविद्यालय की जीव वैज्ञानिक मैरी स्टोडार्ड ने 1400 प्रजातियों के करीब 50 हज़ार अंडों का अध्ययन करके यह निष्कर्ष प्रस्तुत किया था कि अंडों के आकार का सम्बंध उड़ने की ज़रूरत से निर्धारित होता है। अध्ययन तो काफी विशाल था किंतु कई वैज्ञानिक स्टोडार्ड के इस निष्कर्ष से सहमत नहीं थे। इससे पहले कई अन्य वैज्ञानिक इस मामले में अपने विचार रख चुके हैं। कुछ का कहना है कि अंडों के आकार से तय होता है कि घोंसले में कितने अंडे रखे जा सकेंगे, अन्य मानते हैं कि अंदर विकसित होते भ्रूण को ऑक्सीजन की सप्लाई आकार का मुख्य निर्धारक है जबकि कुछ वैज्ञानिकों का मत है कि घोंसलों में से अंडों को लुढ़ककर गिरने से बचाने में आकार की भूमिका है।

अब शेफील्ड विश्वविद्यालय के टिम बर्कहेड ने कुछ प्रयोगों के आधार एक नई व्याख्या पेश की है। इससे पहले वे गणितज्ञों के साथ काम करके अंडों के विभिन्न आकारों को गणितीय रूप में परिभाषित करने का प्रयास करते रहे हैं। अंडों के आकार में विविधता के कारणों को समझने के लिए उन्हें सामान्य मुर्रे (Uria aalge) और उसके निकट सम्बंधी पक्षियों के अंडों का अध्ययन किया। ये सभी पक्षी चट्टानों की कगारों पर अंडे देते हैं।

मुर्रे के अंडे नाशपाती के आकार के होते हैं। ये एक बार में एक नीले रंग का चितकबरा अंडा देते हैं और एक छोटीसी जगह में बहुत सारे पक्षी अंडे देते हैं। इस जगह पर अंडे का टिक पाना थोड़ा मुश्किल होता है क्योंकि थोड़ासा असंतुलन पैदा होने पर अंडा लुढ़ककर टपक सकता है। बर्कहेड और उनके साथियों ने मुर्रे के अंडा देने के ऐसे एक स्थल की अनुकृति अपनी प्रयोगशाला में बनाई। इस पर रेगमाल चिपका दिया गया था ताकि चट्टान का खुरदरापन बना रहे। अब इसकी कगार पर एक अंडा मुर्रे का रखा और दूसरा अंडा उसके एक निकट सम्बंधी का रखा जो थोड़ा लंबा दीर्घवृत्ताकार था।

देखा गया कि मुर्रे का अंडा इस परिवेश में कहीं ज़्यादा स्थिर रहा। जब चट्टान की ढलान बढ़ाई गई तो भी वह टिका रहा। बर्कहेड का कहना है कि मुर्रे का अंडा एक तरफ से थोड़ा नुकीला होता है। इस वजह से जब वह लुढ़कने लगता है तो सीधी रेखा में न लुढ़ककर गोलाई में लुढ़कता है जिसकी वजह से वह गिरता नहीं बल्कि गोलगोल घूमता रहता है।

यही प्रयोग 30 अन्य प्रजातियों के अंडों पर भी दोहराए। इस आधार पर उन्होंने दी ऑक व आइबिस नामक शोध पत्रिकाओं में निष्कर्ष दिया है कि अंडा देने की जगह अंडों के आकार में दोतिहाई विविधता की व्याख्या करती है।

एक अन्य समूह ने कृत्रिम रूप से निर्मित अंडों पर प्रयोग करके यही निष्कर्ष निकाला है। न्यूयॉर्क सिटी युनिवर्सिटी और हंटर कॉलेज के शोधकर्ताओं ने 11 प्रजातियों के पक्षियों के अंडों के 3-डी प्रिंटर से बनाए गए मॉडल्स का अध्ययन किया। जर्नल ऑफ एक्सपेरिमेंटल बायोलॉजी में प्रकाशित उनके शोध पत्र का भी यही निष्कर्ष है कि अंडों के टिके रहने का उनके आकार के निर्धारण में मुख्य महत्व है। वैसे अभी मामला पूरी तरह सुलझा नहीं है और आगे शोध तथा नए निष्कर्षों की प्रतीक्षा करनी होगी। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/inline__450w__no_aspect/public/eggs_16x9_0.jpg?itok=YJW-UFex

मकड़ियों के रेशम से बने वैक्सीन – डॉ. विपुल कीर्ति शर्मा

कैंसर की कोशिकाएं सामान्य कोशिकाओं से प्रमुख रूप से इस बात में भिन्न होती हैं कि वे निरंतर विभाजित होती हैं। इस कारण उनकी संख्या में लगातार अनावश्यक वृद्धि होती जाती है। हमारे शरीर की प्रतिरक्षा तंत्र की कोशिकाएं इन्हें नष्ट करने की कोशिश तो करती हैं किंतु हर बार ही इनकी कोशिश सफल हो इसकी संभावना कम ही होती है। कैंसर के इलाज के लिए वैक्सीन के द्वारा प्रतिरक्षा तंत्र की कोशिकाओं को उत्तेजित किया जाता है ताकि वे भी तेज़ी से विभाजित होकर अपनी संख्या बढ़ाएं और कैंसर कोशिकाओं को मार सकें।

जेनेवा व फ्राइबर्ग विश्वविद्यालय तथा जर्मनी के म्युनिक और बायरुथ विश्वविद्यालय के साथ एक स्टार्टअप कंपनी ए.एम. सिल्क के मित्रों की मंडली ने संयुक्त रूप से एक आश्चर्यजनक प्रयोग किया है। उन्होंने मकड़ी के जाले से बने सूक्ष्म कैप्सूल में वैक्सीन को भरकर प्रतिरक्षा तंत्र की कोशिकाओं में प्रविष्ट करा दिया। इससे ये कोशिकाएं तेज़ी से विभाजित होंगी और कैंसर कोशिकाओं की भारी संख्या को पराजित करने के लिए इनकी भी पर्याप्त संख्या उपलब्ध होने लगेगी। अगर यह प्रयोग सफल हुआ तो इस प्रकार के कैप्सूल अनेक गंभीर बीमारियों के इलाज में प्रयुक्त हो सकेंगे।

हमारे शरीर में हर पल रोगाणु प्रवेश करते रहते हैं। शरीर को स्वस्थ रखने की ज़िम्मेदारी प्रतिरक्षा तंत्र के दो तरीकों पर निर्भर करती है। एक तरीका सेल मेडिएटेड प्रतिरक्षा कहलाता है, जिसमें विशेष टीकोशिकाएं रोगाणुओं को चुनचुन कर मारती हैं। दूसरे प्रकार का तरीका ह्युमोरल प्रतिरक्षा कहलाता है। इसमें बीकोशिकाएं उत्तेजित होकर प्लाज़्मा कोशिकाओं का उत्पादन करती हैं जो एंटीबॉडी बनाकर रोगाणुओं को नष्ट करती हैं।

कैंसर और टी.बी. जैसी कुछ संक्रमणकारी बीमारियों में टीकोशिका को उत्तेजित करने की ज़रूरत होती है। टीकोशिकाएं तभी कार्य करती हैं जब रोगाणुओं की पहचान बताने वाले प्रोटीन के अंश (पेप्टाइड्स) टीकोशिका द्वारा पहचान लिए जाते हैं।

एक अकेली टीकोशिका की बजाय अनेक प्रकार की टीकोशिकाएं ट्यूमर कोशिका पर सम्मिलित रूप से आक्रमण करके मारती हैं। ये टीकोशिकाएं हैं CL, TC और NK कोशिकाएं। इस कार्य को अंजाम देने के लिए कुछ मित्र कोशिकाएं भी साथ देती हैं जैसेमेक्रोफेज, मास्ट कोशिकाएं तथा डेंड्राइटिक कोशिकाएं।

वर्तमान में उपयोग में आने वाले अधिकांश वैक्सीन केवल बीकोशिकाओं को उत्तेजित करते हैं। अब तक हम टीकोशिकाओं की कार्यक्षमता का दोहन नहीं कर पाए हैं। टी एवं बी दोनों कोशिकाओं को उत्तेजित करने से वैक्सीन बेहद कारगर हो सकते हैं।

सूक्ष्म कैप्सूल बनाना

कैंसरकारी ट्यूमर कोशिकाओं को नष्ट करने के लिए उपयोग में लाए गए कैप्सूल मकड़ी के जाले में प्रयुक्त रेशम प्रोटीन से बनाए गए हैं। इस कार्य के लिए युरोपियन वैज्ञानिकों ने वहां पर पाई जाने वाली बेहद आम मकड़ी एरेनियस डायाडेमेटस का उपयोग किया है। पहिए के समान रोज़ नए जाले बनाने वाली इस मकड़ी की पीठ पर क्रॉस बने होने के कारण इसे क्रॉस मकड़ी भी कहते हैं। क्रॉस मकड़ी के जाले के धागे बेहद हल्के, प्रतिरोधी और अविषैले होते हैं तथा इन्हें कृत्रिम रूप से प्रयोगशाला में संश्लेषित किया जा सकता है। वैज्ञानिकों नें क्रॉस मकड़ी के रेशम को प्रयोगशाला में बनाकर तथा पेप्टाइड में लपेटकर टीकोशिकाओं के अंदर प्रविष्ट हो सकने वाला सूक्ष्म कैप्सूल बनाया है। मकड़ी के रेशम से बना यह कैप्सूल पेप्टाइड को सुरक्षित रखकर कोशिका के भीतर तक ले जाता है। यह वैक्सीनेशन विधि बेहद कारगर और उपयोगी साबित हुई है तथा शोध के परिणाम प्रभावशाली रहे हैं।

मकड़ियों के रेशम से बने वैक्सीन का क्या लाभ है यह प्रश्न महत्वपूर्ण है। एक लाभ तो यह है कि इन्हें ठंडे वातावरण में रखने की ज़रूरत नहीं है, क्योंकि ये बेहद खराब वातावरण में भी संरक्षित रहते हैं। इसलिए इनका एक्सपायरी टाइम भी बहुत लंबा होगा। सामान्य वैक्सीन को दूरस्थ स्थान तक ले जाते समय ठंडा रखना आवश्यक होता है क्योंकि गर्मी में ये बेअसर हो जाते हैं। किंतु सिंथेटिक रेशमी कैप्सूल में गर्मी सहन करने की इतनी क्षमता होती है कि ये कई घंटों तक 100 डिग्री सेल्सियस पर भी बगैर किसी नुकसान के कारगर सिद्ध होते हैं।

यद्यपि इस पूरी प्रक्रिया में कैप्सूल का सूक्ष्म आकार सर्वाधिक महत्वपूर्ण होता है, क्योंकि रेशम के साथ पेप्टाइड जुड़कर अणु बड़ा हो जाता है, और उसे ही कोशिका में प्रवेश करना होता है। अगर बड़े पेप्टाइड को रेशम से जोड़कर पहुंचाना है तो कुछ उपाय निकालने होंगे। फिर भी सैद्धांतिक रूप से पूरी प्रक्रिया बेहद सरल और कारगर है। और इसे व्यावहारिक बनाने के प्रयत्न निरंतर चल रहे हैं।

मकड़ियां भी वैज्ञानिक अनुसंधान में महत्वपूर्ण सिद्ध हो सकती है। किंतु ये उपेक्षा की शिकार हुई हैं। इनके जाले के रेशम का महत्व अब पहचाना जा रहा है। मकड़ियों पर और अधिक शोध की महत्ता को समझा जाना चाहिए तथा वैज्ञानिक शोध में मकड़ियों को भी उचित स्थान प्राप्त होना चाहिए। क्या पता आपके आसपास रहने वाली कोई मकड़ी विज्ञान के चमत्कारों को आगे ले जाने में मील का पत्थर साबित हो। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencedaily.com/images/2018/06/180612185155_1_540x360.jpg

 

एक चींटी की विचित्र जीवन शैली

अफ्रीका और मैडागास्कर में रहने वाली एक चींटी की जीवन शैली ने उसकी शरीर रचना को इस कदर परिवर्तित किया है कि कीट वैज्ञानिक अचंभित हैं। मेलिसोटार्सस नामक यह चींटी मात्र चंद मिलीमीटर लंबी होती है मगर इतनी शक्तिशाली होती है कि यह अच्छेखासे सजीव पेड़ों में सुरंगें बनाकर रहती है। ऐसा माना जाता है कि अपने द्वारा बनाई गई इन सुरंगों में ये चीटियां एक अन्य कीट को पालती हैं। ये कीट मोम का निर्माण करते हैं और मेलिसोटार्सस इस मोम का भोजन करती हैं। कई बार तो ये पूरे कीट को भी खा जाती हैं।

सबसे विचित्र बात है कि ये मज़बूत पेड़ों में सुरंग बना लेती हैं। ऐसे सजीव पेड़ों को कुतरना आसान नहीं होता। चींटियों की क्षमता को समझने के लिए पेरिस विश्वविद्यालय के क्रिश्चियन पीटर्स ने ऐसी कुछ चीटियों का अध्ययन 3-डी एक्सरे की मदद से किया। खास तौर से उन्होंने इन चीटियों की टांगों, सिर और जबड़े पर ध्यान दिया।

अध्ययन में पता चला कि इन चींटियों के सिर की मांसपेशियां बहुत मज़बूत होती हैं। ये मज़बूत मांसपेशियां उनके पैने जबड़ों से जुड़ी होती हैं। मज़बूत मांसपेशियों की वजह से इन जबड़ों में सख्त लकड़ी को भेदने की ताकत आ जाती है। यहां तक कि इनमें जबड़ों को खोलनेबंद करने वाली मांसपेशियां भी चींटी की किसी अन्य प्रजाति से ज़्यादा शक्तिशाली होती हैं।

मगर एक दिक्कत है। जबड़े नुकीले तो होते हैं किंतु इनका उपयोग करते समय नोक के टूटने का खतरा रहता है। विश्लेषण से पता चला कि मेलिसोटार्सस के जबड़ों की नोक पर ज़िंक धातु का अस्तर होता है। दरअसल, इनके पूरे कंकाल में ही भारी धातुओं के साथ ज़िंक का मिश्रण पाया जाता है जो इनको अत्यंत टिकाऊ बनाता है।

इस चींटी के बारे में जानकारी फ्रंटियर्स इन बायोलॉजी में प्रकाशित हुई है। शोधकर्ताओं को लगता है कि यह एक उदाहरण है जिसमें एक ही जीव में इतने सारे अनुकूलन हुए हैं जो एकदूसरे को मदद करते हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://photos.smugmug.com/Ants/Taxonomic-List-of-Ant-Genera/Melissotarsus/i-9rVtxmm/1/0c570bf5/L/weissi4-L.jpg

जीव विज्ञान में अमूर्त का महत्व – डॉ. अश्विन साई नारायण शेषशायी

अमूर्तिकरणएक बहुअर्थी शब्द है। एक मायने में इसका मतलब होता है कि वास्तविक घटनाओं और वस्तुओं की बजाय उनका प्रतिनिधित्व करने वाले विचारों का प्रस्तुतीकरण। ऑक्सफोर्ड अंग्रेज़ी शब्दकोश अमूर्तिकरण की परिभाषा कुछ इस तरह देता है: किसी चीज़ पर उसके अंतर्सम्बंधों या गुणधर्मों से स्वतंत्र विचार करना। एक दूसरे अर्थ में, इसका आशय चंद उदाहरणों के आधार पर किसी अवधारणा का सामान्यीकरण भी होता है। इसका एक अर्थ यह भी होता है कि कतिपय रचनाओं का आसान सारतत्व निकालना।

प्रचलित संस्कृति में अमूर्तिकरण का सम्बंध प्राय: आधुनिक कला के साथ जोड़ा जाता है। यह कला रंगों और रेखाओं की एक दृश्य भाषा में व्यक्त होती है, जो वास्तविक दुनिया को छूती भी है और नहीं भी छूती है। शुद्ध या अमूर्त गणित अवधारणाओं के साथ खेलता है जो प्राय: अजीबोगरीब लगती हैं और ऐसा प्रतीत होता है कि उनका हमारे आसपास की दुनिया से कुछ लेनादेना नहीं है। यह अलहदा बात है कि ये अवधारणाएं कभीकभी उच्च टेक्नॉलॉजी का सूत्रपात करती हैं। अर्थ शास्त्र में इंसानों के लोभ और कमज़ोरियों तथा समय व स्थान के साथ इनमें होने वाले परिवर्तनों की वजह से उत्पन्न उथलपुथल को अक्सर अमूर्त गणितीय समीकरणों का रूप दिया जाता है। ये समीकरण बाज़ारों को चलाते हैं, गिराते और उठाते हैं।

जीव विज्ञान का सम्बंध वास्तविकता से है और यह जीवन के अचरजों के साथ सख्त वैज्ञानिक ढंग से काम करता है। क्या अमूर्तिकरण का जीव विज्ञान से कुछ भी लेनादेना हो सकता है? मैं नहीं जानता कि लोग जानकारी के लिए कितनी बार कोरा (Quora) जैसे ढुलमुल स्रोतों का सहारा लेते हैं। बहरहाल जीव विज्ञान में अमूर्तिकरण को गूगल सर्च करें तो वह आपको एक कोरा पेज पर पहुंचा देता है, जहां यह कहा गया है कि जीव विज्ञान में कोई अमूर्तिकरण नहीं होता क्योंकि सब कुछ ठोस वास्तविकता है। अब यदि जीव विज्ञान से आशय जीवन के अध्ययन से है, और अमूर्तिकरण में यह भी शामिल है कि किसी पेचीदा समष्टि के हिस्सों को अलगअलग करना और उन्हें आसान तरीके से निरूपित करना जो जीवन की बहुस्तरीय वास्तविकता का प्रतिनिधित्व कर सकें और नहीं भी कर सकें, तो अमूर्तिकरण जीव विज्ञान का मुख्य हिस्सा हो जाता है।

आणविक नृत्य का समंवय

जैविक तंत्र निहित रूप से पेचीदा होते हैं। प्रत्येक कोशिका हज़ारों किस्म के रसायनों की खिचड़ी होती है जो परस्पर टकराते हैं और क्रिया करते हैं। और यह सब एक सघन आणविक दीवार के अंदर भरे अत्यंत गाढ़े घोल में चलता है। जीव विज्ञान इस सवाल का जवाब देने का प्रयास करता है कि अणुओं के इस सुसंयोजित थैले में कैसे जीवन पैदा होता है और कैसे उसके कुछ रूपों में चेतना का संचार होता है। यदि हम इसमें यह और जोड़ दें कि आणविक विलयनों की एक विशाल विविधता है जिसे कुछ सामान्य सूत्र आपस में जोड़े रखते हैं, जिसका उपयोग हमारे आसपास मौजूद विविध जीव जीवन की रचना के लिए करते हैं, तो सवाल की विशालता स्वत: स्पष्ट हो जाती है। इस जटिलता को देखते हुए, यदि किसी को लगता है कि जीवन की व्याख्या उसकी समस्त बारीकियों के साथ करने के लिए एक वैज्ञानिक रूप से मान्य एकीकारक सिद्धांत प्रतिपादित किया जा सकता है, तो वह थोड़ी ज़्यादा ही मांग कर रहा है। एकमात्र सिद्धांत जो इसके नज़दीक आता है वह है जैव विकास का ढांचा किंतु यह कैसे काम करता है, इसकी बारीकियों का खुलासा अभी होना है और हम समाधान के निकट भी नहीं पहुंचे हैं।

यह स्पष्ट है कि जीवन के अध्ययन का एकमात्र तरीका अमूर्तिकरण का है। जीव विज्ञान के विभिन्न उपविषय जीवन को विभिन्न बिंबों में प्रस्तुत करते हैं। जेनेटिक विज्ञानी के लिए, जीवन के अध्ययन का मुख्य औज़ार यह समझ है कि एक पीढ़ी से दूसरी पीढ़ी तक सूचनाओं का संचार कैसे होता है और इस सूचना की विषयवस्तु में उत्परिवर्तनों का व्यवहारगत परिणाम क्या होता है। स्वयं जेनेटिक सामग्री को कई हज़ार अक्षरों के खंडों में अमूर्त रूप दिया जा सकता है जिनमें से प्रत्येक खंड एक जीन का प्रतिनिधित्व करता है। या इस सामग्री को और भी छोटे खंडों के रूप में देखा जा सकता है जो कुछेक अक्षरों से मिलकर बने हों।

दूसरी ओर, ज़रूरी नहीं कि सूचनाओं के संचार में रुचि रखने वाली किसी जैवरसायनविद की रुचि सजीव के व्यवहार और जीन्स से उसके सम्बंधों में हो। हो सकता है कि उसे लगे कि वर्णमाला के अक्षरों के रूप में जेनेटिक पदार्थ का निरूपण बहुत सरलीकरण है। इसकी बजाय वह शायद यह अध्ययन करने का आग्रह करे कि डीएनए को बनाने वाले अलगअलग परमाणु कोशिका के अन्य रसायनों के साथ कैसे अंतर्क्रिया करते हैं।

जीव विज्ञान में रुचि रखने वाले वैज्ञानिकों का एक समूह सिद्धांतविद है। उनके हिसाब से कोशिका के अंतर चल रहे आणविक नृत्य को या शायद शिकारियों और उनके शिकार के बीच चल रही इकॉलॉजिकल अंतर्क्रियाओं को भी चंद गणितीय समीकरणों में बांधा जा सकता है। इन समीकरणों का उपयोग नईनई जीव वैज्ञानिक परिकल्पनाएं विकसित करने में किया जा सकता है और फिर उन परिकल्पनाओं की प्रायोगिक जांच की जा सकती है।

मॉडल जीव का चुनाव

पिछले एकाध दशक में जीव वैज्ञानिकों का एक नया वर्ग उभरा है जिन्हें सिस्टम्स बायोलॉजिस्ट या तंत्रगत जीव वैज्ञानिक कहते हैं। इन जीव वैज्ञाविकों में भी एक उपसमूह ऐसा है जो कोशिका में आणविक नेटवक्र्स को सामाजिक नेटवर्क्स के समान देखता है। दो अणु ठीक उसी तरह अंतर्क्रिया करते हैं जैसे (उदाहरण के लिए) फेसबुक पर दो मित्र करते हैं। प्रत्येक अणु नेटवर्क में एक नोड बन जाता है और दो नोड्स के बीच अंतर्क्रिया एक किनोर बन जाती है। इन नेटवर्क्स में अंतर्क्रियाओं में काफी विविधता हो सकती है। जैसे यह हो सकता है कि हज़ारों कोशिकीय रसायनों के बड़े पैमाने के नेटवर्क में सारी अंतर्क्रियाएं बराबरी की हों या यह भी हो सकता है कि कुछ बड़े पैमाने की अंतर्क्रियाओं के अलगअलग महत्व हों। यह भी संभव है कि किसी नेटवर्क में दसबीस अणु ही शामिल हों। इन नेटवर्क का विश्लेषण सांख्यिकीय विधियों से किया जा सकता है और इनकी व्याख्या जीव वैज्ञानिक नज़रिए से की जा सकती है।

इनमें से कोई भी रास्ता संपूर्ण नहीं है। एक मायने में यह उस परिस्थिति के समान है जहां चार अंधे व्यक्ति एक हाथी के बारे में अलगअलग राय बनाते हैं। चतुर जीव वैज्ञानिक वह है जो इन विभिन्न रास्तों का एकीकरण कर सके और यह समझाने के लिए परिकल्पना विकसित कर सके कि जीवन का कोई छोटा हिस्सा कैसे काम करता है। इसी वजह से अंतर्विषयी अनुसंधान को बढ़ावा देने की ज़रूरत पर ज़ोर दिया जा रहा है। इसके लिए एक ही सवाल के विभिन्न नज़रियों को समझने की क्षमता ज़रूरी है बल्कि यह भी ज़रूरी है कि आप विविध रवैयों के प्रति खुला दिमाग रखें।

जीवन की विस्तृत विविधता जीव वैज्ञानिक के लिए एक चुनौती है। हम नहीं जानते कि इनमें से अधिकांश जीवों का अध्ययन प्रयोगशाला में कैसे करें। किसी भी जीव के जीव विज्ञान की वैज्ञानिक खोजबीन के लिए प्राय: उसके साथ जेनेटिक छेड़छाड़ करनी पड़ती है। अक्सर हमें पता नहीं होता कि यह कैसे करें। ज़ाहिर है, हम मनुष्यों के जीव विज्ञान का अध्ययन तो करना चाहते हैं किंतु किसी मनुष्य में जेनेटिक इंजीनियरिंग के प्रयोग करना संभव नहीं है। तकनीकी कारण तो हैं ही, साथ में नैतिकता से जुड़े कारण भी हैं।

इसलिए ढेर सारे जीव वैज्ञानिक अनुसंधान में हमने बड़ी संख्या में जीवरूपों का अमूर्तिकरण करके कुछ काम करने योग्य मॉडल जीवों का निर्माण किया है। इसके पीछे मान्यता यह है कि जीवन के अधिकांश रूपों में कुछ साझा सूत्र हैं और एक तरह के जीवों के अध्ययन से अन्य जीवों की आणविक प्रक्रियाओं को समझा जा सकता है; एकदम बारीकियों में नहीं, तो भी मोटे तौर पर तो समझा ही जा सकता है।

मॉडल जीवों का चयन उनके साथ काम करने तथा उनमें फेरबदल करने की सरलता पर निर्भर है। आणविक जीव विज्ञान के क्षेत्र में ऐसे सर्वप्रथम मॉडल जीव एक किस्म के वायरस थे जिन्हें बैक्टीरियाभक्षी वायरस (बैक्टीरियोफेज) कहते हैं। ये झुंड में और काफी रफ्तार से संख्यावृद्धि करते हैं। इसलिए इनके साथ काम करना सुविधाजनक है। अंतत: बैक्टीरियाभक्षी वायरस भी प्रजनन करते हैं और मनुष्य भी। यह सही है कि प्रजनन की प्रक्रिया की बारीकियों में अंतर होते हैं किंतु जीवन के सबसे निचले से लेकर सबसे ऊपरी स्तर तक सिद्धांत वही रहता है। बैक्टीरियाभक्षियों ने हमें यह खोज करने में मदद दी कि आनुवंशिक पदार्थ प्रोटीन नहीं बल्कि डीएनए है।

अलबत्ता, वायरस स्वतंत्र जीव नहीं होते और उन्हें अपना कामकाज चलाने के लिए किसी अधिक विकसित जीव के सहारे की ज़रूरत होती है। इसलिए मशहूर एशरीशिया कोली (. कोली) नामक बैक्टीरिया जीवन का बेहतर मॉडल बन गया। इस बैक्टीरिया ने न सिर्फ प्रजनन के मूल रूप को समझने में मदद की बल्कि यह समझने में भी मदद की कि आम तौर पर शरीर की बुनियादी क्रियाएं यानी चयापचय कैसे चलती हैं और कोशिका नामक कारखाना कैसे जीवनदायी रसायनों के उपभोग व उत्पादन का नियमन करता है।

गैरमनुष्य केंद्रित दृष्टि

मानव कोशिकाएं संरचना के लिहाज़ से ई. कोली व अन्य बैक्टीरिया से बहुत भिन्न होती हैं, इसलिए खमीर कोशिकाओं जैसी ज़्यादा पेचीदा कोशिकाएं मनुष्य की कोशिकीय प्रक्रियाओं को समझने का बेहतर मॉडल बनकर उभरीं। खमीर यानी यीस्ट एककोशिकीय जीव होते हैं जबकि मनुष्य बहुकोशिकीय हैं। लिहाज़ा, बहुकोशिकीय मगर काम करने में आसान फ्रूट फ्लाई (फलमक्खी) और अन्य कृमि मनुष्य के जीव विज्ञान के अध्ययन के बेहतर मॉडल बन गए। इनके साथ फेरबदल करना और अध्ययन करना अपेक्षाकृत आसान है।

इसके बाद आती है बीमारियों को समझने और उनका उपचार करने की ज़रूरत। इसके लिए हमें चूहों, खरगोशों और बंदरों का उपयोग करना होता है। कई बार हमें इनके जेनेटिक रूप से परिवर्तित रूपों का भी उपयोग करना पड़ता है। इन अध्ययनों के चलते न सिर्फ कई महत्वपूर्ण खोजें हुर्इं बल्कि इन्होंने जंतु अधिकार सम्बंधी कई विवादों को भी जन्म दिया।

ऐसे भी मौके आते हैं जब हमें मनुष्य की कोशिकाओं की ज़रूरत पड़ती है, और किसी चीज़ से काम नहीं चलता। विज्ञान के अनुसंधान और नैतिकता के क्षेत्र यह समझने के प्रयास में जुटे हैं कि यह काम प्रभावी ढंग से कैसे किया जा सकता है। अलबत्ता, यह सब कहने का मतलब यह नहीं है कि मॉडल जंतु मात्र ऐसे औज़ार हैं जिनका उपयोग यह समझने में किया जाता है कि मनुष्य के शरीर कैसे काम करते हैं। तथ्य तो यह है कि मनुष्य इस धरती पर जीवन का एक अत्यंत छोटासा अंश हैं और मॉडल तंत्रों का अध्ययन प्राय: उन जंतुओं को समझने के लिए ही किया जाता है ताकि जीवन को पूरे विस्तार में समझा जा सके। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.ohio.edu/cas/biosci/images/cell-microbiology_spotlight.jpg

 

मां के बिना ज़्यादा सहयोगी गुबरैले शिशु

ज़्यादातर कीट अंडे देने के बाद उन्हें छोड़ देते हैं। किंतु कालेनारंगी रंग की, छोटीसी खोदक भृंग (गुबरैला) अपने अंडों को छोड़ती नहीं बल्कि अपने बच्चों की तब तक देखभाल करती है जब तक वे स्वयं भोजन जुटाने लायक ना हो जाएं। किंतु शोधकर्ताओं ने हाल ही में आयोजित वैकासिक जीव विज्ञान पर हुई द्वितीय कांग्रेस में बताया है इसकी संतान जन्म से ही खुद अपना भोजन जुटाने में समर्थ हो सकती हैं।

युरोप के जंगलों और उत्तरी अमेरिका के दलदली इलाकों में पाई जाने वाली खोदक भृंग का भोजन ज़मीन में दबे मृत चूहे या पक्षी होते हैं। इन्हीं के नज़दीक मादा अंडे देती है। वयस्क भृंग शव के ऊपर के बाल या पंख को हटाकर उनका नर्म गोला बना लेते हैं और इन्हें अंडों के साथ रख देते हैं। जब अंडे से बच्चे निकलते हैं तो मांभृंग शव में सुराख कर देती है और नवजात लार्वा को भोजन देती है।  

कैम्ब्रिज विश्वविद्यालय की वैकासिक जीव वैज्ञानिक रेबेका किलनर ने प्रयोगशाला में इन भृंगों के परिवारिक माहौल में बदलाव करके उनमें शारीरिक और व्यावहारिक बदलाव का अध्ययन किया। उन्होंने भृंगों को दो समूहों में रखा। एक समूह में अंडे देने के तुरंत बाद मां को उस समूह से हटा दिया गया। दूसरे समूह में उन्होंने ऐसा कोई बदलाव नहीं किया। लगातार 30 पीढ़ियों तक इस प्रयोग को दोहराने के बाद उन्होंने पाया कि मांविहीन समूह के नवजात लार्वा आकार में बड़े थे और उनके जबड़े मज़बूत थे। किलनर का कहना है कि आम तौर पर भृंगमाता मृत शरीर के आसपास की मिट्टी हटाने और शव में छेद करने का काम करती है। पर जब नवजात लार्वा को खुद ये काम करने पड़ा तो सिर्फ वही लार्वा भोजन तक पहुंच पाए जिनके जबड़े बड़े थे। इसलिए वे जीवित भी रह पाए। इस तरह उनकी संतानों के जबड़े बड़े होते गए।

लार्वा के व्यवहार को समझने के लिए शोधकर्ताओं ने दोनों समूह (मां वाले, और मां विहीन) से विभिन्न अनुपात में लार्वा को एक साथ शव के पास छोड़ा। उन्होंने पाया कि जिस समूह में सभी लार्वा मां विहीन समूह से थे वे भोजन तक पहुंच पाए। किलनर का कहना है कि वे नहीं जानते कि लार्वा यह कैसे कर सके, हो सकता है मिलजुलकर काम करने से उन्हें कामयाबी मिली हो। इसके विपरीत जिस समूह में सारे लार्वा मां वाले समूह से थे वे भोजन तक नहीं पहुंच पाए। देखा गया कि वे शव तक पहुंचने के लिए एकदूसरे से प्रतिस्पर्धा कर रहे थे।

मां विहीन समूह के लार्वा में सहयोग का एक और संकेत दिखाई दिया सभी लार्वा अंडों से एक साथ और जल्दी बाहर निकल आए। किलनर का कहना है कि शव को भेदने के लिए एक खास संख्या में लार्वा की ज़रूरत पड़ती है, अत: यदि अंडों से निकलने का समय एक होगा तो वे मिलजुलकर बेहतर काम कर सकेंगे।

जॉर्जिया विश्वविद्यालय के वैकासिक जीव वैज्ञानिक एलन मूरे का कहना है कि इस अध्ययन से पता चलता है कि परिस्थिति बदलने पर परिवार में कैसे अलगअलग तरह के समाजिक सम्बंध विकसित हो सकते हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit :  www.sciencemag.org/sites/default/files/styles/inline__450w__no_aspect/public/beetle_16x9_0.jpg?itok=lvi1L5Ew