यान के उतरने पर चांद को कितना नुकसान

हमदाबाद स्थित राष्ट्रीय भौतिक प्रयोगशाला के वैज्ञानिकों ने गणना की है कि जब कोई यान चांद पर उतरता है तो चांद की सतह पर कितने गहरे गड्ढे बनते हैं और कितनी धूल उड़ती है। इस गणना का मकसद चांद को कवियों और शायरों के लिए सुरक्षित रखना नहीं बल्कि अवतरण को ज़्यादा सुरक्षित बनाना है।

एस. के. मिश्रा व उनके साथियों ने अपने शोध के परिणाम प्लेनेट स्पेस साइन्स नामक शोध पत्रिका में प्रकाशित किए हैं। जब कोई यान चंद्रमा पर (या किसी भी ग्रह पर) उतरता है तो वह खूब धूल उड़ाता है। इसके चलते गड्ढे वगैरह तो बनते ही हैं, सारी धूल जाकर यान के सौर पैनल पर जमा हो जाती है। यान के लिए ऊर्जा का प्रमुख स्रोत यही सौर पैनल होते हैं जिनकी मदद से सौर ऊर्जा का दोहन होता है। जब इन पर धूल जमा हो जाती है तो ये पैनल ठीक से काम नहीं कर पाते।

मिश्रा व उनके साथियों ने इस क्षति की गणना करने के लिए यह देखा कि उतरने से पूर्व यान कितनी देर तक सतह के ऊपर मंडराता है और कितनी ऊंचाई पर मंडराता है। इन दोनों बातों का असर यान के द्वारा उड़ाई गई धूल की मात्रा पर और धूल के कणों की साइज़ पर पड़ता है।

शोधकर्ताओं ने पाया कि मूलत: यान के सतह से ऊपर मंडराने के समय का असर धूल की मात्रा पर पड़ता है। उनकी गणना बताती है कि यदि मंडराने की अवधि को 25 सेकंड से बढ़ाकर 45 सेकंड कर दिया जाए तो धूल की मात्रा तीन गुनी हो जाती है।

इन परिणामों के मद्देनज़र शोधकर्ताओं का सुझाव है कि चांद की सतह पर क्षति को न्यूनतम रखने के लिए बेहतर होगा कि यान के मंडराने का समय कम से कम रखा जाए। इसके अलावा, उनका यह भी मत है कि अवतरण के समय यान पर ब्रेक लगाने का काम काफी ऊंचाई से ही शुरू कर देना चाहिए और जब यान सतह से 10 मीटर की ऊंचाई पर हो तो ब्रेक लगाना बंद कर देना चाहिए या कम से कम ब्रेक लगाने चाहिए। शोधकर्ताओं के मुताबिक उनके निष्कर्ष चांद पर अवतरण को ज़्यादा सुरक्षित बनाएंगे।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : NASA

चूहों में खोई याददाश्त वापस लाई गई

नुष्यों की तरह चूहों में भी स्मृति लोप होता है जिसमें में वे अपने शैशव अवस्था के अनुभवों या यादों को भूल जाते हैं। हाल ही में करंट बायोलॉजी में प्रकाशित रिपोर्ट के अनुसार चूहों में ये अनुभव पूरी तरह से नहीं मिटते बल्कि उन तक पहुंचना मुश्किल होता है। इन्हें बहाल किया जा सकता है।

19वीं शताब्दी में सिग्मंड फ्रायड के पास कुछ ऐसे मरीज़ आए जिन्हें अपने शुरुआती सालों के अनुभव या बातें याद नहीं थीं। सिग्मंड फ्रायड ने इस बीमारी को शैशव स्मृतिलोप का नाम दिया। तब से लेकर अब तक वैज्ञानिक यह समझने की कोशिश कर रहे हैं कि मनुष्यों, अन्य प्राइमेट्स और कृंतक जीवों में ऐसा क्यों होता है। क्या यह यादों के गड़बड़ भंडारण के कारण होता है या यादों के भंडार में से यादों को वापस ना उभार पाने के कारण होता है। टोरोंटो स्थित हॉस्पिटल ऑफ सिक चिल्ड्रन में कार्यरत मनोवैज्ञानिक पॉल फ्रेकलैंड और उनके साथियों ने चूहों पर इसे समझने की कोशिश की।

शोधकर्ताओं ने चूहों को शुरुआती अनुभव देने के लिए उन्हें एक बक्से में रखा और उनके पैर पर हल्का बिजली का झटका दिया। युवा चूहों ने इस अनुभव को याद रखा और दूसरी बार जब उन्हें बक्से में डाला गया तो वे तुरंत सहम गए। जबकि इसके विपरीत शिशु चूहे एक दिन बाद ही इस वाकये को भूल गए और बक्से में उन्होंने समान्य व्यवहार किया।

हमारे दिमाग में मौजूद हिप्पोकैम्पस का एक हिस्सा नई समृतियां सहेजने के लिए ज़िम्मेदार होता है। चूहों को झटका देने पर भी इस हिस्से की तंत्रिकाएं सक्रिय होती हैं। शोधकर्ताओं ने बिजली का झटका खा चुके चूहों में इस हिस्से की तंत्रिकाओं को सक्रिय करने के लिए लेज़र का उपयोग किया। ऐसा करने पर शिशु चूहों को भी बॉक्स का उनका अनुभव याद आ गया और वे सहम गए।

फ्रेंकलैंड और उनके सहयोगी, झटके के 15, 30 और 90 दिनों के बाद भी उन तंत्रिकाओं को सक्रिय करने में सफल रहे। चूहों को युवावस्था तक बिजली के झटके याद रहे। जब भी उन्हें बक्से में डाला जाता वे डर जाते।

इन्हीं शोधकर्ताओं ने पहले के अध्ययन में शिशुकाल की स्मृतियां ना बचने के पीछे का कारण बताया था कि वयस्क मस्तिष्क में नई स्मृति या अनुभव बनाने के लिए हिप्पोकैम्पस में नई तंत्रिकाएं बनती हैं। ये नई तंत्रिकाएं पुरानी तंत्रिकाओं की जगह ले लेती हैं। यह अध्ययन बताता है कि युवा चूहों में अपने शैशव के अनुभव की स्मृति मिटती नहीं है, पहुचं से दूर हो जाती है।

क्या इस प्रयोग के निष्कर्षों को मनुष्य पर लागू किया जा सकता है? कई वैज्ञानिकों का मत है कि मनुष्यों की स्थिति थोड़ी अलग होती है और सीधेसीधे इन परिणामों को लागू करने में सावधानी रखनी चाहिए।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : The Varisity

स्वायत्त जानलेवा रोबोट न बनाने की शपथ

कृत्रिम बुद्धि के क्षेत्र में कार्यरत कई सारे अग्रणी वैज्ञानिकों ने शपथ ली है कि वे ऐसे रोबोट-अस्त्र बनाने के काम में भागीदार नहीं होंगे जो बगैर किसी मानवीय निरीक्षण के स्वयं ही किसी व्यक्ति को पहचानकर मार सकते हैं। शपथ लेने वालों में गूगल डीपमाइंड के सह-संस्थापक और स्पेसएक्स के मुख्य कार्यकारी अधिकारी समेत 2400 वैज्ञानिक शामिल हैं।

इस शपथ का मुख्य मकसद सैन्य कंपनियों और राष्ट्रों को लीथल ऑटोनॉमस वेपन्स सिस्टम (जानलेवा स्वायत्त अस्त्र प्रणाली) बनाने से रोकना है। संक्षेप में इन्हें लॉस भी कहते हैं। ये ऐसे रोबोट होते हैं जो लोगों को पहचानकर उन पर आक्रमण कर सकते हैं, इन पर किसी इन्सान का निरीक्षण-नियंत्रण नहीं होता।

हस्ताक्षर करने वाले वैज्ञानिकों और उनके संगठनों का कहना है कि जीवन-मृत्यु के फैसले कृत्रिम बुद्धि से संचालित मशीनों पर छोड़ने में कई खतरे हैं। वैज्ञानिकों ने ऐसे हथियारों की टेक्नॉलॉजी पर प्रतिबंध की मांग की है जो जनसंहार के हथियारों की नई पीढ़ी बनाने में काम आ सकती है।

इस शपथ पर हस्ताक्षर अभियान का संचालन बोस्टन की एक संस्था दी फ्यूचर ऑफ लाइफ इंस्टीट्यूट कर रहा है। शपथ में सरकारों से आव्हान किया गया है कि वे जानलेवा रोबोट के विकास को गैर-कानूनी घोषित करें। यदि सरकारे ऐसा नहीं करती हैं तो हस्ताक्षरकर्ता वैज्ञानिक जानलेवा स्वायत्त शस्त्रों के विकास में सहभागी नहीं बनेंगे।

इस संदर्भ में मॉन्ट्रियल इंस्टीट्यूट फॉर लर्निंग एल्गोरिदम के योशुआ बेंजिओ का कहना है कि इस हस्ताक्षर अभियान के ज़रिए जनमत बनाने की कोशिश हो रही है ताकि ऐसे क्रियाकलापों में लगी कंपनियां और संगठन शर्मिंदा हों। उनका कहना है कि यह रणनीति बारूदी सुरंगों के मामले में काफी कारगर रही है हालांकि यूएस जैसे प्रमुख देशों ने उस मामले में हस्ताक्षर नहीं किए थे।

अधुनातन कंप्यूटर टेक्नॉलॉजी से लैस रोबोट शत्रु के इलाके में उड़ान भर सकते हैं, ज़मीन पर चहलकदमी कर सकते हैं और समुद्र के नीचे निगरानी कर सकते हैं। पायलट रहित वायुयान की टेक्नॉलॉजी विकास के अंतिम चरण में है। धीरे-धीरे इन रोबोटों को इस तरह विकसित किया जा रहा है कि ये बगैर मानवीय नियंत्रण के स्वयं ही निर्णय लेकर क्रियांवित कर सकेंगे। कई शोधकर्ताओं को यह अनैतिक लगता है कि मशीनों को यह फैसला करने का अधिकार दे दिया जाए कि कौन जीएगा और कौन मरेगा। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : Metro Parent

 

 

अनैतिकता के निर्यात पर रोक का प्रयास

नैतिकता का निर्यात यानी एथिकल डंपिंग शब्द युरोपीय आयोग ने 2013 में गढ़ा था। इसका आशय यह है कि कई देशों के शोधकर्ता नैतिक मापदंडों के चलते जो शोध अपने देश में नहीं कर सकते उसे किसी अन्य देश में जाकर करते हैं जहां के नैतिक मापदंड उतने सख्त नहीं हैं। यह स्थिति प्राय: विकसित सम्पन्न देशों और निर्धन देशों के बीच उत्पन्न होती है। अब युरोपीय संघ ने इस तरह के अनैतिकता के निर्यात पर रोक लगाने का फैसला किया है।

वैसे युरोपीय संघ द्वारा वित्तपोषित शोध के संदर्भ में अनैतिकता के निर्यात की बात 2013 में ही शुरू हो गई थी किंतु उस समय इस संदर्भ में स्पष्ट दिशानिर्देश नहीं होने के कारण प्रतिबंध को लागू नहीं किया जा सका था। अब आयोग ने दिशानिर्देश तैयार कर लिए हैं और युरोपीय संघ द्वारा वित्तपोषित सारे अनुसंधान प्रोजेक्ट्स में इन्हें लागू किया जाएगा।

युरोपीय आयोग के नैतिकता समीक्षा विभाग का कहना है कि इस तरह से अन्य देशों में जाकर शोध के ढीलेढाले मापदंडों का उपयोग करने से वैज्ञानिक अनुसंधान की गुणवत्ता भी प्रभावित होती है। खास तौर से यह स्थिति जंतुओं पर किए जाने वाले अनुसंधान के संदर्भ में सामने आती है। इसके अलावा, कई मर्तबा यह भी देखा गया है कि जिन देशों में अनुसंधान किया जाता है, वहां के लोगों को पर्याप्त जानकारी देने के मामले में भी लापरवाही बरती जाती है। अनुसंधान में भागीदारी के जो मापदंड युरोप में लागू हैं, उनका पालन प्राय: नहीं किया जाता। दिशानिर्देशों में यह भी कहा गया है कि शोध परियोजनाओं में इस वजह से जानकारी छिपाना या कम जानकारी देना उचित नहीं कहा जा सकता कि वहां के लोग या स्थानीय शोधकर्ता उसे समझ नहीं पाएंगे। इसके अलावा एक मुद्दा यह भी है कि अन्य देशों में शोध करते समय वहां के नियमकानूनों का भी ध्यान रखा जाना चाहिए।

अलबत्ता, कई लोगों का कहना है कि इस तरह की सख्ती से अन्य देशों में अनुसंधान करना मुश्किल हो जाएगा और इससे न सिर्फ वैज्ञानिक अनुसंधान का बल्कि उन देशों का भी नुकसान होगा।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।

Photo Credit: The Conversation

तीन पालकों वाले एक और बच्चे की तैयारी

 सिंगापुर शायद वह दूसरा देश होगा जहां तीन पालकोंदो मां और एक पिताकी संतान पैदा करने की अनुमति मिल जाएगी। इससे पहले युनाइटेड किंगडम में इसे कानूनन वैध घोषित किया गया था। और संभवत: इस वर्ष पहली तीनपालक संतान जन्म लेगी। तो यह मामला क्या है और एक बच्चे की दो मांएं कैसे हो सकती हैं? 

जब स्त्री के अंडाणु और पुरुष के शुक्राणु का निषेचन होता है तो दोनों की आधीआधी जेनेटिक सामग्री निषेचित अंडे में पहुंचती है। मगर कोशिका के एक खास अंग (माइटोकॉण्ड्रिया) पूरे के पूरे सिर्फ मां से आते हैं। माइटो­कॉण्ड्रिया कोशिका का वह अंग है जो ऑक्सीजन का उपयोग करके ग्लूकोज़ से ऊर्जा प्राप्त करने का काम करता है। मज़ेदार बात यह है कि माइटोकॉण्ड्रिया की अपनी स्वतंत्र जेनेटिक सामग्री होती है जो कोशिका के केंद्रक से अलग होती है। 

यदि मां के माइटोकॉण्ड्रिया की जेनेटिक सामग्री में कोई विकार हो तो वह बच्चे में भी पहुंच जाता है और बच्चे को श्वसन सम्बंधी रोग होने की संभावना बढ़ जाती है। इसका प्रभाव मुख्य रूप से मस्तिष्क, हृदय और मांसपेशियों के काम पर होता है। इसलिए वैज्ञानिकों ने यह तकनीक विकसित की है कि ऐसे विकारग्रस्त माइटोकॉण्ड्रिया वाली स्त्री के अंडाणु के निषेचन के दौरान केंद्रक की जेनेटिक सामग्री तो उसकी अपनी रहे किंतु माइटोकॉण्ड्रिया किसी अन्य स्त्री का डाला जाए। तो उस बच्चे की दो मां होती हैंएक जिसके केंद्रक की जेनेटिक सामग्री अंडे में है और दूसरी जिसके माइटो­कॉण्ड्रिया बच्चे को मिले हैं।

इसे माइटोकॉण्ड्रिया प्रतिस्था­पन उपचार या माइटोकॉण्ड्रियल रिप्लेसमेंट थेरपी कहते हैं। और इसे अंजाम देने के कई वैकल्पिक तरीके हैं। इसके कई सामाजिक पक्ष हैं जिन पर विचार करना आवश्यक है। इसलिए सिंगापुर सरकार ने आम लोगों और धार्मिक समूहों को 15 जून तक का समय दिया था कि वे सिंगापुर की जैव आचार परामर्श समिति को अपनी राय बता सकते हैं। इसके आधार समिति अंतिम निर्णय लेगी। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।

फोटो क्रेडिट : Bio ethics observatory

गुरुत्व तरंग प्रयोग का और विश्लेषण

पिछले साल लिगो (लेज़र इंटरफेरोमीटर गुरुत्वतरंग प्रेक्षक) टीम ने दो न्यूट्रॉन तारों के परस्पर विलय के फलस्वरूप उत्पन्न हुई गुरुत्व तरंगों को पकड़ा था। वैज्ञानिकों का ख्याल है कि उस अवलोकन से जो आंकड़े मिले थे उनके विश्लेषण से नए-नए निष्कर्ष निकालने की अभी और संभावना है। यह काम किया भी जा रहा है।

हाल ही में उन आंकड़ों के नए सिरे से विश्लेषण के आधार पर न्यूट्रॉन तारों की आंतरिक संरचना के बारे में नए सुराग मिले हैं। न्यूट्रॉन तारा तब बनता है जब कोई विशाल तारा फूटता है और उसका अधिकांश पदार्थ अंतरिक्ष में बिखर जाता है किंतु अंदर का पदार्थ अत्यंत घना हो जाता है। इतने घने पदार्थ का गुरुत्वाकर्षण भी बहुत अधिक होता है किंतु ब्लैक होल जितना नहीं होता।

पिछले साल अगस्त में जो गुरुत्व तरंगें देखी गई थीं वे पृथ्वी से 13 करोड़ प्रकाश वर्ष दूर दो न्यूट्रॉन तारों के आपस में विलय की घटना में उत्पन्न हुई थीं। लेकिन तब यह नहीं बताया गया था कि इस विलय के बाद क्या बना – क्या विलय के उपरांत एक और न्यूट्रॉन तारा बना या ब्लैक होल?

अब उस विलय के आंकड़ों का एक बार फिर विश्लेषण किया गया है। विश्लेषण से पता यह चला है कि जब उक्त दो न्यूट्रॉन तारे एक दूसरे का चक्कर काटते हुए संयुक्त विनाश की ओर बढ़ रहे थे, तब उनकी परिक्रमा ऊर्जा अंतरिक्ष में बिखर रही थी। साथ ही अपने-अपने गुरुत्वाकर्षण बल के कारण वे एक-दूसरे की सतह पर ज्वार भी उत्पन्न कर रहे थे। ज्वार-आधारित परस्पर क्रिया की वजह से उनकी परिक्रमा ऊर्जा और तेज़ी से कम हुई और उनकी टक्कर अपेक्षा से जल्दी हुई।

उपरोक्त ज्वारीय अंत र्क्रिया की प्रकृतिव परिमाण उन तारों की आंतरिक संरचना पर निर्भर होगा। वैज्ञानिकों का ख्याल है कि लिगो प्रेक्षण के दौरान जो आंकड़े मिले थे, उनका और अधिक बारीकी से विश्लेषण करके न्यूट्रॉन तारों की आंतरिक रचना के बारे में पता चल सकेगा। एक अनुमान यह भी है कि आंतरिक दबाव के चलते शायद उनमें न्यूट्रॉन और भी मूलभूत कणों (क्वार्क्स) में टूट गए होंगे और शायद हमें इनके बारे में कुछ और पता चले। तो प्रयोग के आंकड़ों की बाल की खाल निकालकर वैज्ञानिक अधिक से अधिक समझ बनाने की जुगाड़ में हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।

फोटो क्रेडिट : NASA

प्रयोगशाला बनी आंत की लंबाई बढ़ाने की कोशिश

 वैज्ञानिकों ने मानव स्टेम कोशिकाओं को संवर्धित करने की तकनीक को इतना परिष्कृत कर लिया है कि अब प्रयोगशाला में मानव अंगों के छोटे रूप बनाए जा सकते हैं। ये वास्तविक अंग की सूक्ष्म अनुकृति होते हैं और इन्हें अंगाभ या ऑर्गेनॉइड कहते हैं। ये उस अंग के कामकाज की अच्छी नकल कर लेते हैं और इनका उपयोग उस अंग के कामकाज और बीमारियों के अध्ययन हेतु किया जा सकता है। किंतु फिलहाल यह स्थिति नहीं आई है कि ऐसे अंगाभों का प्रत्यारोपण वास्तविक अंग की जगह किया जा सके। अब एक अध्ययन में पता चला है कि यदि मानव आंत के अंगाभ में कुछ स्प्रिंग का इस्तेमाल किया जाए तो उसकी लंबाई बढ़ने लगती है।

सामान्यत: शरीर में जब आंत का विकास होता है तो उसपर तमाम खिंचाव और तनाव के बल लगते हैं। इन बलों के प्रभाव से आंत लंबी होने लगती है। शोधकर्ताओं ने किया यह कि मानव स्टेम कोशिकाओं से ऊतक विकसित किया और उसे चूहे के शरीर में प्रत्यारोपित कर दिया। जब चूहे के शरीर में 10 सप्ताह तक इसका विकास हो चुका था, तब उन्होंने इसके अंदर एक स्प्रिंग को जिलेटिन में लपेट कर डाला। शुरू में स्प्रिंग अच्छे से दबाकर जिलेटिन में लपेट दी गई थी। इस दबी स्प्रिंग को चूहे के शरीर में विकसित हो रहे आंतअंगाभ के अंदर डाला तो जिलेटिन घुल गया और स्प्रिंग फैलने लगी।

जब अंगाभ को बगैर स्प्रिंग के पनपाया गया था तो उसकी लंबाई 0.5 से.मी. हो पाई थी जब किस्प्रिंग की मदद से वह 1.2 से.मी. लंबी हुई। नेचर बायोमेडिकल जर्नल में प्रकाशित शोध पत्र में टीम ने बताया है कि न सिर्फ इस अंगाभ की लंबाई ज़्यादा थी, इसमें आंत की कई अन्य रचनाएं भी विकसित हुईं। जैसे सामान्य आंत की अंदरुनी सतह पर उंगली जैसे उभार होते हैं जिन्हें विलाई कहते हैं। ये विलाई आंत की अंदरुनी सतह का क्षेत्रफल बढ़ादेते हैं और आंत अवशोषण का अपना काम कहीं बेहतर ढंग से कर पाती है। यह भी देखा गया कि इस अंगाभ में पाचन तंत्र के कुछ जीन्स की भी बेहतर अभिव्यक्ति हुई।

इस सबके बावजूद अभी भी यह अंगाभ वास्तविक अंग या उसके खंड का स्थान लेने के लिए पर्याप्त नहीं है। किंतु शोधकर्ताओं का ख्याल है कि यह प्रयोग चूहे के शरीर में किया गया था और चूहा अपेक्षाकृत छोटा जंतु है। यदि यही प्रयोग किसी बड़े जंतु में करेंगे तो उम्मीद है कि बेहतर नतीजे मिलेंगे और संभवत: एक दिन प्रत्यारोपण के लिए अंग बन पाएंगे। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।

फोटो क्रेडिट : UTHFA

एक बदनाम दवा की नई संभावनाएं

थेलिडोमाइड 195060 के दशक में बहुत बदनाम हुई थी और कई चिकित्सकीय मुकदमों का सबब बनी थी। यह दवा गर्भावस्था के दौरान होने वाली तकलीफों के लिए दी जाती थी किंतु इसके सेवन के बाद जो बच्चे पैदा हुए थे उनमें हाथपैरों का विकास ठीक से नहीं हुआ था और कई मामलों में तो भुजाविहीन बच्चों के जन्म भी हुए थे। मगर अब वैज्ञानिकों को लग रहा है कि थेलिडोमाइड दवाइयों की दुनिया में एक नई अवधारणा को जन्म दे सकती है।

पिछले कुछ वर्षों में वैज्ञानिकों ने पाया है कि थेलिडोमाइड रक्त कैंसर मल्टीपल मायलोमा के खिलाफ काफी कारगर है। यह दवा अस्थि मज्जा में इस कैंसर की जड़ों को ही नष्ट कर देती है। हालांकि इसके प्रभाव की बात कई सालों से पता रही है किंतु यह पता नहीं चल पाया था कि शरीर में इसकी क्रिया कैसे होती है।

अब नए अनुसंधान से थेलिडोमाइड की क्रियाविधि का खुलासा होने के साथ ही वैज्ञानिकों को लग रहा है कि यह क्रियाविधि कई अन्य कैंसरों के अलावा अल्ज़ाइमर और पार्किंसन जैसे रोगों में काम कर सकती है।

दरअसल, थेलिडोमाइड की क्रियाविधि इस बात पर निर्भर है कि यह कोशिका के कचरानिपटान तंत्र को प्रभावित करती है। 2010 में शोधकर्ताओं ने पता लगाया था कि चूहों में थेलिडोमाइड एक ट्यूमर पैदा करने वाले प्रोटीन से जुड़ जाती है। इस जुड़ाव का परिणाम यह होता है कि कोशिका में उस अणु को कचरे के रूप में चिंहित कर दिया जाता है, जिसे हटाया जाना है।

इस मामले में विडंबना यह है कि थेलिडोमाइड इसी क्रियाविधि का इस्तेमाल करके भ्रूण में भुजाओं के विकास से सम्बंधित प्रोटीन से भी जुड़ जाती है और उसे भी कचरा घोषित करवा देती है। इसकी वजह से वह प्रोटीन भ्रूण के विकास में अपनी सामान्य भूमिका नहीं निभा पाता और भ्रूण के हाथपैरों का विकास बाधित होता है।

मगर थेलिडोमाइड की इस भूमिका के आधार पर उपचार की एक नई अवधारणा उभरी है प्रोटीनविघटन उपचार। इसका मतलब है कि आप उन प्रोटीन्स के सफाए का लक्ष्य रखें जो शरीर में विकार/रोग उत्पन्न करते हैं। हालांकि इसके सम्बंध में प्रयोग कैंसर से शुरू हुए हैं किंतु उम्मीद है कि अल्ज़ाइमर व पार्किंसन जैसे अन्य रोगों के संदर्भ में भी ऐसे प्रोटीन पहचाने जा सकेंगे। प्रोटीनविघटन उपचार की संभावनाओं को देखते हुए अचानक कई कंपनियां इस क्षेत्र में शोध कार्य करने लगी हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।

फोटो क्रेडिट : Pure Chemicals

मुश्किल इलाकों में वैज्ञानिक विचारों का प्रसार

सेक्स विश्वविद्यालय की एक भौतिक विज्ञानी केट शॉ मूलभूत कणों की खोज जैसे अग्रणी शोध से जुड़ी हैं। इसके साथ ही वे फिज़िक्स विदाउट फ्रंटियर (सरहदों से मुक्त भौतिकी) की संस्थापक भी हैं। यह युनेस्को द्वारा प्रायोजित एक संगठन है जो युद्धरत देशों में व्याख्यान, कार्यशालाएं और स्कूल चलाने का काम करता है ताकि दुनिया भर में विज्ञान में लोगों की रुचि बढ़े।

कार्यक्रम की शुरुआत वर्ष 2012 में हुई थी। शुरुआत में शॉ ने रामल्ला के नज़दीक बिर्ज़ाइट विश्विद्यालय के छात्रों को लार्ज हैड्रॉन कोलाइडर से परिचित कराया। लगभग एक साल बाद एटलस एक्सपेरिमेंट पर काम कर रहे अपने दो फिलिस्तीनी साथियों के साथ वहां के छात्रों का प्रक्षिशण शुरू किया। छात्रों का स्तर काफी अच्छा था, प्रक्षिशण फला-फूला और अलग अलग कोर्स चलाए जाने लगे।

शॉ बताती हैं कि समय-समय पर होने वाली कार्यशालाओं और कार्यक्रमों के लिए इंटरनेशनल सेंटर फॉर थेओरिटिकल फिज़िक्स से वित्तीय सहायता मिलती है।

शॉ का कहना है कि क्या पता अगला महान वैज्ञानिक, अगला अब्दुस्सलाम या अगला एलन ट्यूरिंग कहां से आएगा, इसलिए हमारा काम यह सुनिश्चित करना है कि सबको बढ़िया शिक्षा मिले और सबको अनुसंधान में शामिल होने का अवसर मिले; यह मात्र पश्चिमी, रईस देशों की बपौती न हो। फिज़िक्स विदाउट फ्रंटियर्स मुख्य रूप से नेपाल, अफगानिस्तान और फिलिस्तीन में काम करता है लेकिन लैटिन अमेरिकी देशों (वेनेज़ुएला, कोलंबिया, पेरू और उरुग्वे) और अब लेबनान, ट्यूनिशिया, अल्जीरिया, ज़िम्बाब्वे तथा बांग्लादेश में भी काम चलता है।

इनमें से फिलिस्तीन में काम करना सबसे कठिन है। वेस्ट बैंक में कुछ कम लेकिन गाज़ा पट्टी में राजनीतिक समस्याएं काफी अधिक हैं। देखा जाए तो वहां स्थित तीन विश्वविद्यालयों में भौतिकी को लेकर बढ़िया काम हो रहा है लेकिन फैकल्टी एकदम अलग-थलग है। वे बाहर यात्रा नहीं कर सकते और इस वजह से कई बार उन्हें अच्छे मौके भी गंवाने पड़ जाते हैं।

गाज़ा के छात्रों को वैज्ञानिक सम्मेलनों में जाने के लिए एक लम्बी प्रक्रिया से गुज़रना पड़ता है जिससे वे उनमें देर से शामिल हो पाते हैं या कभी कभी तो इस्राइल सरकार से अनुमति ही नहीं मिलती। उपकरण ले जाने में भी काफी परेशानियां होती हैं। बिजली की कमी के कारण नियमित शोध कार्य नहीं हो पाता है। शायद इसी कारण अच्छे छात्र होने के बाद भी वहां कई संस्थाएं शोध में पूंजी लगाने से कतराती हैं।

हाल में शॉ और उनके साथियों ने अफगानिस्तान में भी काम शुरू किया है, जहां सुरक्षा सम्बंधी गंभीर समस्याएं हैं। अच्छी बात यह है कि वहां अद्भुत युवा पीढ़ी है जो अपने देश को आगे ले जाना चाहती है। वे अपने विषयों में काफी मज़बूत हैं और भौतिकी के क्षेत्र में अंतर्राष्ट्रीय सहयोग हासिल करने की कोशिश कर रहे हैं।

अनुदार/रुढ़िवादी सोच वाले स्थानों में काम करने को लेकर शुरुआत में उन्होंने सावधानी से काम लिया लेकिन जैसे-जैसे काम आगे बढ़ा, शॉ को समझ में आया कि वहां भी लोग बिग बैंग और ब्राहृांड की उत्पत्ति के बारे में वही सवाल पूछते हैं। यह बात काफी आश्वस्त करने वाली है कि ऐसे इलाकों में भी वैज्ञानिक विचारों को लेकर किसी प्रकार का कोई टकराव नहीं है।

शॉ और उनकी टीम को उम्मीद है कि प्रत्येक विश्वविद्यालय इस कार्यक्रम से जुड़े और फिर वहां भौतिकी के लिए कुछ और धन लाया जाए। लक्ष्य दुनिया भर में एक जीवंत वैज्ञानिक समुदाय का निर्माण करना है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।

फोटो क्रेडिट :Physics without frontiers

 

 

पौधे की तरह दवा उत्पादन में खमीर की भूमिका – डॉ. डी. बालसुब्रमण्यन

पौधे औषधियों के समृद्ध स्रोत होते हैं। यह बात तब से ज्ञात है जब से मनुष्यों ने समुदायों के रूप में मिल-जुलकर रहना शुरू किया था। (वास्तव में, लगता तो यह है कि चिम्पैंज़ी भी दवा के रूप में चुनकर विशेष पौधे खाना पसंद करते हैं)। आयुर्वेद, यूनानी, सिद्ध, आदिवासी औषधियां, प्राच्य चिकित्सा और होम्योपैथी में वनस्पति-आधारित यौगिकों का इस्तेमाल दवाइयों और टॉनिक के रूप में होता रहा है। कार्बनिक रसायन शास्त्र में खास तौर से प्राकृतिक उत्पाद और औषधि रसायन जैसी विशेष शाखाएं हैं। इस विधा में शोधकर्ता चुनिंदा पौधे इकट्ठा करते हैं और उनमें से विशेष अणुओं को अलग करने की कोशिश करते हैं। इसके बाद उनकी रासायनिक संरचनाओं का अध्ययन करके बीमारियों के खिलाफ उनकी प्रभाविता की जांच करते हैं (इस क्षेत्र को औषधि रसायन कहते हैं)।

किसी भी पौधे में हज़ारों अणु अलग-अलग मात्राओं उपस्थित होते हैं। अक्सर जिस दवा अणु की तलाश कर रहे हैं वह बहुत कम मात्रा में पाया जाता है। एक मायने में यह मात्र घास के ढेर में सुई ढूंढने जैसी समस्या नहीं है बल्कि मनचाहे यौगिक तक पहुंचने के लिए ऐसे कई ढेरों की ज़रूरत होती है ताकि काम करने के लिए ठीक-ठाक मात्रा (कुछ ग्राम) मिल सके। इस प्रकार प्राकृतिक उत्पाद रसायन काफी चुनौतीपूर्ण क्षेत्र रहा है और सफल शोधकर्ताओं को हीरो माना जाता है और सम्मान व पुरस्कार से नवाज़ा जाता है। इसका एक हालिया उदाहरण चीन की महिला वैज्ञानिक डॉ. यूयू तू का है। उन्हें 2015 में चिकित्सा का नोबेल पुरस्कार दिया गया था। उन्होंने दशकों के परिश्रम के बाद मलेरिया के लिए चीनी जड़ी-बूटी क्विंगहाओ से आर्टेमिसीनीन नामक अणु को अलग किया था।

एक बार जब प्राकृतिक उत्पाद रसायनज्ञ दवा के अणु को अलग करके उसकी रासायनिक संरचना को निर्धारित कर लेता है, तब वह इस अणु को प्रयोगशाला में बनाने (संश्लेषण) का प्रयास करता है। अभी तक यह एक चुनौतीपूर्ण और कमरतोड़ काम रहा है। चूंकि अणु का आकार त्रि-आयामी होता है तो इसमें परमाणुओं की जमावट काफी जटिल हो सकती है। प्रयोगशाला में इस तरह के जटिल अणुओं का निर्माण कुछ हद तक एक आर्किटेक्ट के काम के समान है जो र्इंट-गारा जोड़कर इमारत बनाता है। इस मामले में भी हीरो को सम्मान दिया जाता है।

ऐसे ही एक हीरो हारवर्ड के स्वर्गीय प्रोफेसर रॉबर्ट वुडवर्ड थे जिन्होंने दशकों तक सफलतापूर्वक कई जटिल अणुओं का संश्लेषण किया था और इस काम के लिए उन्हें 1965 में रसायन में नोबेल पुरस्कार से नवाज़ा गया था। आर्किटेक्ट उपमा को आगे बढ़ाते हुए महान कार्बनिक रसायनज्ञ स्वर्गीय प्रोफेसर सुब्रामण्य रंगनाथन ने एक मोनोग्राफ लिखा था जिसका शीर्षक था ‘दी आर्ट ऑफ आर्गेनिक सिंथेसिस’ (कार्बनिक संश्लेषण की कला)।

क्विंगहाओ आर्टेमिसीनीन कैसे बनाता है? पूरी प्रक्रिया एक दर्जन से ज़्यादा चरणों में सम्पन्न होती है। इनमें से कई चरण एंज़ाइम द्वारा उत्प्रेरित होते हैं जो प्रोटीन अणु होते हैं। हमने इनमें से प्रत्येक चरण का खुलासा कर लिया है और यह भी समझ लिया है कि पादप कोशिकाओं में इन एंज़ाइम्स को बनाने में कौन से जीन्स शामिल हैं (दरअसल यह जीन का पूरा समूह है)। अब इस जानकारी के दम पर, और जेनेटिक्स और जेनेटिक इंजीनियरिंग में हुई प्रगति की मदद से क्या हम कार्बनिक रसायन की विधियों की बजाय जेनेटिक इंजीनियरिंग की विधियों का इस्तेमाल करके आर्टेमिसिनिन को प्रयोगशाला में बना सकते हैं? और यदि हम इस जीन समूह को किसी सूक्ष्मजीव (जैसे खमीर) में प्रविष्ट कराएं तो क्या वह आर्टेमिसिनिन बनाने लगेगा? यदि ऐसा कर पाते हैं तो हमें टनों जड़ी-बूटी उगाने और काटने की ज़रूरत नहीं पड़ेगी; खमीर के विशाल कल्चर में किलोग्राम के हिसाब से दवा बनाई जा सकेगी।

आर्टेमिसिनिन बनाने के लिए किसी सूक्ष्मजीव का इस्तेमाल एक नवाचारी विचार है। यदि हमें सफलता मिलती है तो हम खमीर को एक पौधे में तबदील कर देंगे जिसका इस्तेमाल हम कम से कम पांच सहस्त्राब्दियों से घरों और बेकरियों में करते आए हैं। लेकिन इसके लिए खमीर कोशिकाओं में उनके अपने जीनोम के साथ-साथ पौधे में उस दवा को बनाने के लिए ज़िम्मेदार जीन समूह भी होना चाहिए।

कैलिफोर्निया विश्वविद्यालय के प्रोफेसर जे. केसलिंग और एमायरिस कंपनी के डॉ. नील रेनिंगर का तर्क है कि जेनेटिक्स और जेनेटिक इंजीनियरिंग में हुई प्रगति की बदौलत अब यह विचार बड़बोलापन नहीं है बल्कि काम करने के लायक है। गेट्स फाउंडेशन के अनुदान से उनकी टीम ने दवा उत्पादन के लिए पौधे द्वारा इस्तेमाल किए जाने वाले पूरे जीन समूह का रासायनिक संश्लेषण किया और उसे खमीर कोशिकाओं के अनुरूप संशोधित किया, और खमीर कोशिकाओं में प्रविष्ट करा दिया। उन्होंने प्रयोगशाला में इस जेनेटिक रूप से परिवर्तित खमीर का कल्चर बनाया और पाया कि वह खमीर आर्टेमिसिनिन बना सकता है। इस समूह ने 2013 तक इस विधि में काफी सुधार करके प्रति लीटर कल्चर माध्यम से 25 ग्राम एंटी-मलेरिया दवा का उत्पादन किया है।

पिछले कुछ वर्षों के दौरान, कई अन्य दवाइयों, जो प्राकृतिक रूप से पौधों और जड़ी-बूटियों में मिलती है, का उत्पादन खमीर की मदद से किया गया है। हाल ही में पीएनएएस पत्रिका में ली व साथियों ने अपने शोध पत्र में उन्होंने बताया है कि उन्होंने खमीर की मदद से कैंसर-रोधी दवा नोस्केपाइन का उत्पादन किया है। यह कुदरती रूप से अफीम के पौधे में पाई जाती है। तिकड़म यह है कि पादप कोशिका में यह अणु बनाने वाले जीन समूह की पहचान की जाए, इन्हें प्रयोगशाला में बनाकर खमीर में डाल दिया जाए और अनुकूल परिस्थितियां निर्मित की जाएं। तब यह पौधा-रूपी खमीर उस अणु का उत्पादन करेगा। पांच हज़ार से अधिक वर्षों से जाना-माना जो खमीर ब्रोड और शराब बनाने के काम आता रहा है, अब एक नई भूमिका निभाएगा। (स्रोत फीचर्स)

नोट : यह लेख वेबसाइट पर 7 जून 2018 तक ही उपलब्ध रहेगा|