क्लोरोप्लास्ट चुराते समुद्री घोंघे

सौर ऊर्जा (solar energy) से चलने वाले समुद्री घोंघों (sea slugs) की कोशिकाओं में विशेष भंडार गृह होते हैं, जहां वे शैवालों से चुराए गए क्लोरोप्लास्ट जमा करके रखते हैं। इन भंडार गृहों का रासायनिक परिवेश ऐसा होता है कि चोरी के इस माल (क्लोरोप्लास्ट) को जीवित व कामकाजी हालत में रखा जा सकता है ताकि सूर्य का प्रकाश मिलने पर यह पोषण का संश्लेषण कर सके। शोधकर्ताओं ने इस भंडार गृह को क्लोरोप्लास्ट रेफ्रिजरेटर (chloroplast refrigerator) की संज्ञा दी है। मज़ेदार बात यह है कि सामान्य स्थिति में यहां भंडारित क्लोरोप्लास्ट प्रकाश संश्लेषण के ज़रिए स्लग को भोजन उपलब्ध कराता है, वहीं आपात स्थिति में स्लग इसे पचाकर भी आहार प्राप्त कर लेते हैं।

यह बात दशकों से पता रही है कि समुद्री घोंघों की कई प्रजातियां जिस शैवाल (algae) का भक्षण करती हैं, उनके क्लोरोप्लास्ट को जमा करके रख लेती हैं। इस चोरी को क्लेप्टोप्लास्टी (kleptoplasty) कहते हैं। लेकिन स्लग कोशिका के अंदर तो मात्र क्लोरोप्लास्ट जमा होता है, शैवाल की पूरी कोशिका नहीं। वैज्ञानिक यह नहीं जानते थे कि पूरी शैवाल कोशिका के सहारे के बगैर क्लोरोप्लास्ट जीवित व कामकाजी कैसे बना रहता है।

हारवर्ड विश्वविद्यालय (Harvard University) के निकोलस बेलोनो व साथियों द्वारा सेल (Cell journal) में प्रकाशित शोध पत्र में इसी सवाल पर विचार किया गया है। बेलोनो की टीम ने स्वयं घोंघे की कोशिकाओं द्वारा हाल ही में बनाए गए प्रोटीन्स की निशानदेही कर दी। पता चला कि अधिकांश प्रोटीन्स का निर्माण मूल शैवाल द्वारा नहीं बल्कि स्वयं घोंघे द्वारा किया गया था। मतलब हुआ कि घोंघे ने क्लोरोप्लास्ट को सहेजकर रखा था और वह प्रकाश संश्लेषण कर पा रहा था।

क्लोरोप्लास्ट को सूक्ष्मदर्शी से देखने पर पता चला कि उसे घोंघे की आंत में एक खास प्रकोष्ठ में रखा गया था। प्रत्येक प्रकोष्ठ एक ऐसी झिल्ली से घिरा था जो ठीक वैसी पाई गई जैसी एक अन्य कोशिकांग फैगोसोम (phagosome) के आसपास पाई जाती है। फैगोसोम का काम यह होता है कि वह एक अन्य कोशिकांग लायसोसोम (lysosome) से जुड़ जाता है और अनावश्यक कोशिकांगों को पचाने का काम करता है। शोधकर्ताओं ने इस संरचना को क्लेप्टोसोम (kleptosome) नाम दिया है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://static.scientificamerican.com/dam/m/2f739d1cde63ff18/original/sea-slug.jpg?m=1751039137.919&w=900

वायरस बनने की राह पर एक सूक्ष्मजीव

क दो-चाबुकी (डायनोफ्लेजिलेट) जीव है सिथारिस्टिस रेजियस (Citharistes regius)। डायनोफ्लेजिलेट एककोशिकीय जीव होते हैं जो प्रकाश संश्लेषण (photosynthesis) करके अपना भोजन खुद बना सकते हैं। ये दो चाबुकनुमा तंतुओं से लैस होते हैं जो उन्हें चलने-फिरने में मदद करते हैं।

रोचक बात यह है कि त्सुकुबा विश्वविद्यालय के ताकरुप नाकायामा और उनके साथियों ने इस एककोशिकीय जीव के अंदर एक विचित्र परजीवी (parasite discovery) खोजा है। इसे सुकुमार्चियम नाम दिया है और अभी यह सिर्फ अपने जीनोम (genome sequencing) के आधार पर पहचाना गया है।

तो, जीनोम के विश्लेषण से वैज्ञानिकों ने बताया है कि यह एक परजीवी है जो अपने एककोशिकीय मेज़बान (host cell) को कुछ नहीं देता। सुकुमार्चियम में कुल मिलाकर 189 प्रोटीन बनाने वाले 189 जीन्स हैं। ये सभी सिर्फ एक काम पर केंद्रित हैं – अपने जीनोम की प्रतिलिपि बनाना (genetic replication)। इस काम को अंजाम देने के लिए बाकी सारी सामग्री यह अपने मेज़बान से लूटता है। और विचित्रताएं अभी बाकी हैं…

जैसे, इस सूक्ष्मजीव की जेनेटिक शृंखला का कुछ हिस्सा ऐसा है जैसे यह एक आर्किया जीव (archaea) हो। आर्किया बैक्टीरिया की अपेक्षा हमारे जैसे जटिल जीवों (complex life forms) की तरह अधिक होते हैं। लेकिन सुकुमार्चियम की जीवन शैली वायरस के काफी मिलती-जुलती है और लगता है कि यह वायरस और एक-कोशिकीय जीवों के बीच की कड़ी (virus evolution link) है।

दरअसल, सुकुमार्चियम की खोज संयोग से ही हुई थी। शोधकर्ता सिथारिस्टिस रेजियस के अंदर उपस्थित समस्त डीएनए का अनुक्रमण (DNA sequencing) करने की कोशिश कर रहे थे क्योंकि यह तो पता ही था कि इसके अंदर सायनोबैक्टीरिया (cyanobacteria) पलते हैं। जब विश्लेषण किया तो स्वयं सिथारिस्टिस रेजियस और अपेक्षित बैक्टीरिया परजीवी के अलावा उन्हें डीएनए का अजीब-सा वृत्त मिला। इसमें मात्र 2 लाख 38 हज़ार क्षार जोड़ियां थीं, जिसकी लंबाई . कोली बैक्टीरिया के डीएनए (E. coli DNA) की मात्र 5 प्रतिशत थी। पहले लगा कि शायद यह प्रयोग के दौरान मिलावट का परिणाम होगा लेकिन तमाम कोशिशों के बाद भी जब वह बना रहा तो उन्हें मानना पड़ा कि यह एक नया जीव (new organism) है जो सिथारिस्टिस रेजियस के अंदर रहता है।

सुकुमार्चियम के पास चयापचय (metabolism) के लिए कोई जीन नहीं है, यानी यह शायद अमीनो एसिड (amino acids), प्रोटीन या न्यूक्लियोटाइड जैसे कोई अनिवार्य अणु नहीं बना पाता है। दरअसल, किसी वायरस की तरह यह अपनी प्रतिलिपि बनाने के अलावा बाकी हर काम के लिए मेज़बान पर आश्रित (host-dependent parasite) है।

तो क्या यह जीव वायरस बनने की राह पर है (virus evolution theory)? वायरस की उत्पत्ति के बारे में दो धारणाएं प्रचलित हैं। पहली, ये बैक्टीरिया वगैरह जैसे संपूर्ण कोशिका थे और धीरे-धीरे इनमें से रचनाएं व उनके बनने के लिए ज़िम्मेदार जीन्स कम होते गए और अंतत: सिर्फ वह हिस्सा बचा जो स्वयं की प्रतिलिपि बनाने में कारगर है। दूसरी, ये जीवों के विकास की शुरुआती अवस्था (primitive life form) हैं और धीरे-धीरे विभिन्न घटक जुड़ते जाएंगे। सुकुमार्चियम इस मार्ग पर कहीं है मगर किस दिशा में जा रहा है, स्पष्ट नहीं है। जब तक स्वतंत्र जीव नहीं मिलता तब तक कुछ कह नहीं सकते। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.z7ekqxv/full/_20250611_on_mostviruslikeorganism-1750188390777.jpg

शार्क की प्रतिरक्षा प्रणाली का चौंकाने वाला आयाम

शार्क पिछले 40 करोड़ सालों से अस्तित्व में हैं। वे कई बड़े-बड़े संकटों से बची रही हैं और खुद को कई तरह की सुरक्षा क्षमताओं से लैस किया है। अब एक हालिया शोध से खुलासा हुआ है कि उनकी प्रतिरक्षा प्रणाली (immune system) में पैंक्रियास (अग्न्याशय) (pancreas) की भी अहम भूमिका है।

गौरतलब है कि इंसानों में पैंक्रियास का काम पाचन में मदद करना और रक्त शर्करा (blood sugar) नियंत्रित करना होता है, लेकिन दी जर्नल ऑफ इम्युनोलॉजी में प्रकाशित इस अध्ययन में बताया गया है कि नर्स शार्क (Ginglymostoma cirratum) इस अंग का इस्तेमाल एंटीबॉडी (antibodies) बनाने और विशेष प्रतिरक्षा कोशिकाओं (immune cells) को प्रशिक्षित करने के लिए करती है। आम तौर पर यह काम मनुष्यों में तिल्ली और लसिका ग्रंथियों जैसे अंगों में किया जाता है।

मैरीलैंड युनिवर्सिटी के शोधकर्ता थॉमस हिल और हेलेन डूली को शार्क के पैंक्रियास में ऐसी प्रतिरक्षा कोशिकाएं मिली हैं जो आम तौर पर शरीर के मुख्य प्रतिरक्षा अंगों (primary immune organs) में पाई जाती हैं। शार्क के पैंक्रियास न सिर्फ बी-कोशिकाओं का निर्माण करते हैं बल्कि श्वेत रक्त कोशिकाओं (white blood cells) को सूक्ष्मजीवी हमलों (microbial attacks) से लड़ने के लिए तैयार भी करते हैं।

शार्क में पैंक्रियास की प्रतिरक्षा भूमिका को परखने के लिए वैज्ञानिकों ने एक शार्क के शरीर में बाहरी संक्रामक डाले, और दूसरी शार्क को कोविड-19 टीका (COVID-19 vaccine) लगाया। कुछ हफ्तों बाद, शार्क के पैंक्रियास में उपरोक्त रोगजनक-विशिष्ट एंटीबॉडी मिलीं, जिससे साबित हुआ कि यह अंग सिर्फ साथ नहीं देता, बल्कि सीधे लड़ाई में शामिल होता है।

यह खोज इसलिए और भी महत्वपूर्ण है क्योंकि शार्क में इंसानों के समान लसिका ग्रंथियां (lymph nodes) नहीं होती हैं, जो हमारे प्रतिरक्षा तंत्र का ज़रूरी हिस्सा होती हैं। इसका मतलब है कि समय के साथ उद्विकास ने शरीर के दूसरे अंगों को नए कामों के लिए ढाल लिया है, खासकर उन जीवों में जिनकी शरीर संरचना मनुष्यों से अलग है।

यह अध्ययन एक बड़ा सवाल उठाता है – क्या हमारे शरीर के दूसरे अंगों और अन्य जीवों में भी ऐसे गुप्त प्रतिरक्षा तंत्र (hidden immune functions) हो सकते हैं? क्या यह संभव है कि मनुष्यों का पैंक्रियास भी प्राचीन काल से कुछ प्रतिरक्षा भूमिकाएं निभाता आया हो? यह समझ शायद यह भी बता सके कि यह अंग सूजन (inflammatory diseases) जैसी बीमारियों (जैसे पैंक्रियाटाइटिस) (pancreatitis) के प्रति इतना संवेदनशील क्यों होता है।

बहरहाल, इस पर अभी अधिक अध्ययन (research) की ज़रूरत है। यह देखना चाहिए कि क्या शार्क में पैंक्रियास हमेशा प्रतिरक्षा के लिए तैनात रहता है? क्योंकि मनुष्यों में कभी-कभी गैर-प्रतिरक्षी अंग (non-immune organs) में भी प्रतिरक्षा कोशिकाएं मिलती हैं, खासकर पैंक्रियास में। साथ ही हमें देखना चाहिए कि शरीर के कौन-कौन से हिस्से प्रतिरक्षा प्रक्रिया (immune response)  में योगदान करते हैं। शायद हम प्रतिरक्षा प्रणाली के कई हिस्सों को अब तक नज़रअंदाज़ करते रहे हैं क्योंकि हमें लगा था कि हम सब कुछ जान चुके हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.z6ht3u4/full/_20250616_on_nursesharks-1750187630430.jpg

यह जीव यूवी प्रकाश से भी बच निकलता है

त्यंत ऊर्जावान पराबैंगनी प्रकाश (यूवी-सी) (UV-C radiaton) इतना घातक होता है कि लगभग सारी कोशिकाओं को मार डालता है। इसी वजह से इसका इस्तेमाल अस्पतालों में विसंक्रमण (hospital disinfection) के लिए किया जाता है। लेकिन हाल ही में एस्ट्रोबायोलॉजी (Astrobiology) में प्रकाशित एक शोध पत्र के अनुसार एक जीव इतना सख्तजान है कि वह यूवी-सी को भी झेल जाता है।

यूवी-सी से बच निकलने वाला यह जीव एक लाइकेन (lichen) है। लाइकेन दरअसल मिश्रित जीव होते हैं और एक फफूंद (fungus) तथा एक शैवाल (algae) से मिलकर बनते हैं। लगता है कि इस मिश्र-जीव ने यूवी-सी का तोड़ निकाल लिया है।

डेज़र्ट रिसर्च इंस्टीट्यूट (Desert Research Institute) के खगोलजीव वैज्ञानिक (astrobiologist) हेनरी सन ने फील्ड वर्क के दौरान देखा था कि मोजावे के गर्म रेगिस्तान (Mojave desert) में एक लगभग काला-सा लाइकेन फल-फूल रहा था। सन ने अनुमान लगाया कि शायद इसका काला रंग (dark pigmentation), जो हरे पर हावी हो गया था, ही इसके रेगिस्तान में ज़िंदा रहने का राज़ है। इस लाइकेन क्लेवेसिडियम लेसिन्यूलेटम (Clavascidium lacinulatum) के नमूने प्रयोगशाला में लाकर अपने एक छात्र तेजिंदर सिंह को उसके अध्ययन में लगा दिया।

तेजिंदर सिंह ने पहले तो लाइकेन को सुखा दिया। इसके बाद उन्होंने लाइकेन को एक यूवी लैम्प (UV lamp) के नीचे रखा और उस पर विकिरण की बौछार की। लाइकेन ठीक-ठाक ही रहा। तब सिंह ने उस पर अत्यंत शक्तिशाली यूवी-सी बरसाया (लगभग उतना जितना मंगल पर उम्मीद की जा सकती है) (extreme UV-C exposure)। ऐसा ही यूवी-सी परीक्षण पृथ्वी पर पाए जाने वाले सर्वाधिक विकिरण रोधी बैक्टीरिया (डाईइनोकॉकस रेडियोड्यूरेन्स, Deinococcus radiodurans) (radiation-resistant bacteria) पर किया तो वह एक मिनट के अंदर मर गया था। यह मानकर चला जा रहा था कि लाइकेन कुछ घंटे या अधिक से अधिक कुछ दिन जी पाएगा। लेकिन तीन महीने तक परीक्षण करने के बाद जब वह नमूना निकाला गया तो उसमें मौजूद आधी से ज़्यादा शैवाल कोशिकाओं (algal cells) में से अंकुर फूटे और 2 सप्ताह में वहां बढ़िया हरी-भरी बस्ती तैयार हो गई। यानी इतने अत्याचार के बाद भी शैवाल में प्रजनन क्षमता (reproductive viability) मौजूद थी।

दिलचस्प बात थी कि यह प्रयोग सिर्फ लाइकेन के साबुत नमूने (intact lichen samples) पर ही सफल रहा। यही प्रयोग जब फफूंद के बगैर शैवाल कोशिकाओं की एक मोटी परत पर किया गया तो वे चंद मिनटों में मर गई। अर्थात ऊपरी परत की कोशिकाएं अन्य कोशिकाओं को मात्र विकिरण से सुरक्षा (radiation shielding) नहीं दे रही थीं।

लाइकेन की इस जीजिविषा (survivability) का कारण जानने के लिए सन की टीम ने रसायनज्ञों की मदद से लाइकेन में यूवी-अवशोषक पदार्थों (UV-absorbing compounds) की पहचान की। ये रसायन लाइकेन को यूवी से सुरक्षा देते हैं। लेकिन एक सवाल बना रहा कि ये रसायन इस लाइकेन में बनना ही क्यों शुरू हुए। सवाल इसलिए था क्योंकि पृथ्वी की ओज़ोन परत (ozone layer) करीब 50 करोड़ वर्ष पूर्व अस्तित्व में आई मानी जाती है। यानी लाइकेन्स के उद्भव (lichen evolution) से काफी पहले ओज़ोन परत अस्तित्व में आ चुकी थी और पृथ्वी पर यूवी का आपतन बहुत कम रह गया था। तो यूवी से सुरक्षा की यह व्यवस्था क्यों बनी होगी?

शोधकर्ताओं का अनुमान है कि लाइकेन्स में यह व्यवस्था खुद को स्वयं पृथ्वी के वातावरण से सुरक्षित रखने के लिए बनी होगी क्योंकि एक समय पर वनस्पतियों के फैलाव की वजह से वातावरण में ऑक्सीजन की मात्रा बढ़ने लगी थी। ऑक्सीजन सजीवों के लिए अनिवार्य तो है लेकिन यह ऐसे क्रियाशील अणु (reactive molecules) पैदा कर सकती है जो डीएनए को नुकसान (DNA damage) पहुंचाते हैं।

इसी प्रयोग में एक और रोचक बात पता चली। ये सुरक्षात्मक रसायन (protective chemicals) लाइकेन के अंदरुनी भाग में नहीं बल्कि उसकी ऊपरी सतह (outer surface) पर जमा हो जाते हैं, ठीक सनस्क्रीन (natural sunscreen) की तरह। कई शोधकर्ता लाइकेन की इस खूबी के उपयोग की बात कर रहे हैं। अलबत्ता, मनुष्य के लिए उपयोगी हो न हो, लाइकेन के लिए तो यह सुरक्षा व्यवस्था (UV defense) उपयोगी है ही। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://lichenportal.org/imglib/lichens/Sharnoff_FieldObs/Clavascidium-lacinulatu/Clavascidium-lacinulatum_5_Sharnoff_1005_15.jpg

नौ भुजा वाला ऑक्टोपस

वैज्ञानिकों को यह तो काफी पहले से पता था कि यदि ऑक्टोपस की एक भुजा घायल हो जाए तो उनका यह उपांग दो शाखाओं में विभाजित हो जाता है और एक नई भुजा विकसित होती है (octopus limb regeneration)। अलबत्ता यह पता नहीं था कि यह नौवीं भुजा कितनी कामकाजी होती है और ऑक्टोपस क्षतिग्रस्त भुजा के साथ काम चलाना कैसे सीखता (octopus behavior after injury) है।

अब वैज्ञानिकों ने पहली बार प्राकृवास (natural habitat) में ऑक्टोपस का अध्ययन कर न सिर्फ टूटी हुई भुजा को फिर से विकसित होते देखा है बल्कि उसमें संवेदनशीलता का विकास भी देखा (octopus sensory recovery) है।

अध्ययन में शोधकर्ताओं ने स्पैनिश द्वीप इबीसा (Ibiza) के तट पर एक युवा ऑक्टोपस (Octopus vulgaris) को देखा, जिस पर शिकारी ने हमला किया था और उसकी आठ में से पांच भुजाएं घायल (octopus injury in wild) हो गई थीं। हालांकि, अधिकांश भुजाएं तो ठीक हो गईं, लेकिन सामने की दाहिनी भुजा दो हिस्सों में बंट गई, जिससे उसके पास नौ भुजाएं (nine arms in octopus) हो गईं।

शुरुआत में, ऑक्टोपस ने दर्द की वजह से घायल भुजा का इस्तेमाल शिकार (hunting behavior) जैसे खतरनाक कामों में नहीं किया। उसकी बजाय पास की दूसरी भुजा ने काम संभाला, जिससे पता चलता है कि घायल भुजा की सुरक्षा के लिए वे अपना व्यवहार कैसे बदलते (adaptive behavior in octopus) हैं।

लेकिन समय के साथ एक विचित्र चीज़ देखी गई। इस टूटी भुजा की दोनों शाखाएं मज़बूत होने लगीं और जटिल, जोखिमपूर्ण काम करने लगीं, जैसे चीज़ों को छूना और शिकार पकड़ना (prey capture with regrown arm)। यह बदलाव ऑक्टोपस के लचीलेपन (behavioral flexibility) को बखूबी उजागर करता है; न सिर्फ शरीर बल्कि उसके व्यवहार के लचीलेपन को भी। ऑक्टोपस की भुजाएं कुछ हद तक मस्तिष्क से स्वतंत्र (octopus decentralized nervous system) काम करती है, यानी ये मस्तिष्क के दखल के बिना संवेदी प्रतिक्रिया देने में सक्षम होती हैं। एनिमल पत्रिका (animal journal) में प्रकाशित इस अध्ययन में बताया गया है कि यह व्यवहार उसकी नव-निर्मित नौवीं भुजा में भी नज़र आया जब वह स्वस्थ होकर नए-नए काम करने लगी। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://cdn.mos.cms.futurecdn.net/ApdEJogWFE9gTeogHodjri.jpg

पैंगोलिन पर प्रमुख खतरा

पैंगोलिन दुनिया के इकलौते स्तनधारी जीव हैं जिनके शरीर पर सुरक्षात्मक कवच (pangolin with scales) होता है। लेकिन दुर्भाग्य से इनकी आबादी बहुत तेज़ी से कम हो रही है। इसके लिए इनकी खाल की अवैध तस्करी (illegal pangolin trade) को दोष दिया जाता है, लेकिन एक नए अध्ययन से पता चला है कि नाइजीरिया के क्रॉस रिवर जंगलों में इनकी संख्या घटने की वजह कुछ और है – इनके मांस के लिए स्थानीय लोगों द्वारा शिकार (pangolin meat hunting)।

कैम्ब्रिज युनिवर्सिटी के वैज्ञानिकों ने 3 साल तक 33 गांवों में 800 से ज़्यादा शिकारियों और व्यापारियों से बातचीत में पाया कि हर साल करीब 21,000 पैंगोलिन मारे जाते हैं। हैरानी की बात यह है कि ज़्यादातर पैंगोलिन का शिकार इरादतन नहीं होता, बल्कि खेतों में काम करते समय ये अचानक मिल जाते हैं और मारे जाते हैं या जाल में फंस जाते हैं। चिंताजनक बात यह है कि अन्य शिकारी जीवों से बचाव की पैंगोलिन की रणनीति – सिकुड़कर गोल गेंदनुमा (pangolin defense mechanism) बन जाना – मनुष्यों के लिए इन्हें पकड़ना आसान बना देती है।

इस शोध से पता चला है कि पैंगोलिन के शिकार की सबसे बड़ी वजह है उसका मांस (pangolin meat consumption)। पकड़े गए करीब तीन-चौथाई पैंगोलिन शिकारी खुद खाते हैं और बाकी को स्थानीय बाज़ारों (local wildlife markets, bushmeat in Nigeria) में बेच देते हैं। इसके उलट, उनकी खाल या तो फेंक दी जाती है या बहुत कम कीमत पर बिकती है। इसकी तुलना में मांस से तीन-चार गुना अधिक कमाई होती है।

असल में, स्थानीय इलाकों में पैंगोलिन का मांस बीफ या चिकन से भी अधिक स्वादिष्ट (pangolin meat preference over beef) माना जाता है। कुछ पारंपरिक मान्यताएं तो इसे गर्भवती महिलाओं के लिए फायदेमंद भी मानती हैं, ताकि बच्चा स्वस्थ हो। ऐसी सांस्कृतिक मान्यताओं के चलते शिकार और इन जानवरों की धीमी प्रजनन दर (pangolin reproduction rate) मिलकर इनकी संख्या दोबारा बढ़ने नहीं देती। ऊपर से, तेज़ी से हो रही जंगलों की कटाई और खेती की वजह से पैंगोलिन का प्राकृतवास खत्म (pangolin habitat loss) होता जा रहा है।

वैज्ञानिकों का मानना है कि इस संकट से निपटने के लिए सिर्फ अंतर्राष्ट्रीय नियमों से काम नहीं चलेगा, स्थानीय स्तर (community-based conservation) पर भी ठोस कदम उठाने होंगे। इनमें शामिल हैं: गांवों में मज़बूत निगरानी दल, स्थानीय रूप से लागू वन्यजीव सुरक्षा कानून, और ऐसी योजनाएं जो लोगों की जंगली जानवरों के शिकार से हासिल मांस पर निर्भरता घटाएं (wildlife protection laws) ।

प्रोफेसर एंड्रयू बामफोर्ड के अनुसार जब तक लोगों के व्यवहार का कारण (understanding local hunting behavior) नहीं समझा जाता, तब तक कोई कारगर संरक्षण योजना नहीं बन सकती। साथ ही संरक्षण के प्रयासों में सहभागिता के लिए ज़रूरी है कि स्थानीय लोग पैंगोलिन के पारिस्थितिकी महत्व को समझें (ecological role of pangolins)।

अध्ययन के मुख्य शोधकर्ता डॉ. चार्ल्स एमोगोर ‘पैंगोलिनो’ (Pangolino) नामक एक स्थानीय संगठन चलाते हैं जो ऐसी ही एक पहल कर रहा है। उनका कहना है कि यदि हमने पैंगोलिन को खो दिया तो हम जैव विकास की 8 करोड़ साल पुरानी धरोहर (evolutionary significance of pangolins, pangolin extinction threat) खो देंगे। ये एकमात्र शल्कधारी स्तनधारी हैं और इनके पूर्वज डायनासौर के समकालीन थे। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Pangolin_brought_to_the_Range_office%2C_KMTR_AJTJ_cropped.jpg/1200px-Pangolin_brought_to_the_Range_office%2C_KMTR_AJTJ_cropped.jpg

पक्षी खट्टे फल शौक से खा सकते हैं

मली, नींबू, कैरी जैसी खट्टी चीज़ें (sour fruits) वैसे तो हम चटखारे लेकर खाते हैं, लेकिन इनको खाने से चेहरे पर उभरी तरह-तरह की भंगिमाओं से भी हम खूब वाकिफ हैं – भिंची हुई अधखुली आंखें, सिकुड़ा-कसकर बंद मुंह और मुंह में आता पानी! हम खट्टा तो खाते हैं या खा सकते हैं लेकिन एक हद तक, थोड़ी मात्रा में। हम इन्सानों की वरीयता मीठे स्वाद की अधिक (sweet vs sour taste, human taste preference) होती है, खासकर फलों के मामले में। लेकिन, शायद आपने गौर किया हो, कई पक्षी खट्टे फल (नींबू, कैरी) वगैरह बड़े मज़े से खाते हैं, और वो भी बिना ‘मुंह बिगाड़े’। और तो और, हमारी तरह थोड़ी मात्रा में नहीं बल्कि ये खट्टे फल इनका भोजन होते हैं। लेकिन कैसे वे इतना खट्टा खा लेते हैं? क्या उनको खट्टा नहीं लगता है?

इसी गुत्थी को सुलझाया है चाइनीज़ एकेडमी ऑफ साइंसेज़ के जीवविज्ञानी लेई लुओ, वैकासिक जीवविज्ञानी हाओ झांग और उनके दल ने। उनका कहना है कि हमारे लिए जो घोर खट्टी चीज़ें है, कुछ पक्षियों को वे उतनी खट्टी लगती ही नहीं हैं (bird sour taste tolerance, why birds eat lemon)। और, ऐसा होता है उनके खास विकसित स्वाद ग्राहियों की वजह से, जो खट्टेपन को दबा देते हैं।

दरअसल, पिछले कुछ सालों में अध्ययनों का दायरा ‘पक्षी क्या खाते हैं’ से ‘पक्षी जो खाते हैं वो क्यों-कैसे खाते हैं’ समझने तक बढ़ा है (avian feeding behavior)। इसी के साथ ही, खट्टे स्वाद को भी तफसील से समझा जाने लगा। अभी, सात साल पहले ही यह मालूम चला है कि कशेरुकियों में खट्टे स्वाद के ग्राही कौन से हैं। इन ग्राहियों को OTOP1 (OTOP1 taste receptor) की संज्ञा दी गई है।

तो, शोधकर्ताओं के मन में सवाल थे कि क्या उनके खट्टे स्वाद के ग्राही कुछ भिन्न होते हैं और यदि होते हैं तो क्या अंतर है? जैव-विकास में यह अंतर कब आया? इसका फायदा क्या है?

इसे समझने के लिए शोधकर्ताओं ने चूहों, कबूतर और एक तरह की सॉन्ग बर्ड कैनरी के OTOP1 ग्राहियों को अलग-अलग सांद्रता के अम्लीय घोल (खट्टे घोल) ‘चखाए’ और उनकी प्रतिक्रिया (taste receptor comparison, mouse vs bird sour taste) देखी। पाया गया कि खट्टापन बढ़ने के साथ चूहों के ग्राहियों की सक्रियता बढ़ती गई। अधिक खट्टे खाद्य पदार्थ चूहों और हम जैसे अन्य स्तनधारियों को अधिक खट्टे लगते हैं। लेकिन कबूतर और कैनरी के खट्टे स्वाद के (OTOP1) ग्राही नींबू जितनी खटास वाले घोल पर भी कम सक्रिय रहे। यानी उन्हें खट्टा स्वाद उतना खट्टा नहीं लगता। इसके अलावा यह भी देखा गया कि कैनरी पक्षी के OTOP1 स्वाद ग्राही कबूतर की तुलना में खट्टे के प्रति अधिक सहनशील (canary taste tolerance) हैं।

अब देखना था कि विभिन्न कशेरुकियों के OTOP1 स्वाद ग्राही इतनी अलग-अलग प्रतिक्रिया क्यों करते हैं। इसे समझने के लिए शोधकर्ताओं ने OTOP1 ग्राही को एन्कोड करने वाले जीन के अलग-अलग हिस्सों में उत्परिवर्तन (mutation and taste adaptation) करके देखे। इससे उन्हें चार ऐसे अमीनो एसिड मिले जो खट्टेपन की सहनशीलता को बढ़ाने के लिए ज़िम्मेदार हो सकते हैं। अंतत: उन्हें एक ऐसा अमीनो एडिस – G378 (G378 amino acid) – मिला जो खट्टेपन की सहनशीलता को बढ़ाने के लिए ज़िम्मेदार होता है। और, यह अमीनो एसिड सिर्फ कैनरी जैसे सॉन्ग बर्ड्स में पाया जाता है। अध्ययन में भी तो सॉन्ग बर्ड्स के स्वाद ग्राही ही खट्टे स्वाद के प्रति सबसे अधिक सहनशील दिखे थे।

फिर, शोधकर्ताओं ने विभिन्न पक्षियों (खट्टा खाने और न खाने वाले पक्षियों) के OTOP1 के प्रोटीन अनुक्रमों की तुलना की। उन्होंने पाया कि सॉन्ग बर्डस में G378 – और इससे हासिल खटास के प्रति सहनशीलता – करीब ढाई से साढ़े तीन करोड़ साल पहले प्रकट (evolution of taste in birds) हुई है। दिलचस्प बात यह है कि सॉन्ग बर्ड्स में G378 का प्राकट्य मीठे स्वाद के ग्राहियों के उद्भव के साथ हुआ है।

ऐसा अनुमान है कि पक्षियों द्वारा खट्टे फल खाने को वरीयता देना अन्य जीवों के साथ भोजन प्रतिस्पर्धा (food competition in animals) को कम करता है। जब फल खाने वाले अन्य स्तनधारी जीव, खासकर बड़े जीव, मीठे फल खाते हैं, तो खट्टे फल पक्षियों के लिए बचे रहते हैं। खासकर आपदा की स्थिति में खट्टे फल खाकर ऊर्जा ले पाना जीवित रहने का एक अच्छा तरीका है।

एक संभावना यह भी है कि पक्षियों में खट्टेपन की सहनशीलता और पौधों में पक्षी-अनुकूल फलों का स्वाद सह-विकास (co-evolution plants and birds, seed dispersal by birds) का परिणाम है। पक्षी फल खाकर अपने मल (बीट) के माध्यम से दूर-दूर तक बीज फैलाते हैं, यदि पेड़-पौधों के फलों का स्वाद पक्षियों को भाएगा तो उसके बीज दूर-दूर तक पहुंचेंगे। जो पेड़-पौधे के हित में होगा। इसलिए, एक मान्यता है कि पेड़-पौधे अपने फलों का स्वाद पक्षी अनुकूल करते गए होंगे।

बहरहाल, इस क्षेत्र में अध्ययन अभी शुरू ही हुए हैं। दुनिया भर में पक्षियों की 10,000 से अधिक प्रजातियां हैं, जिनका विविध तरह का भोजन (bird species diet diversity) है। इन पर व्यापक अध्ययन कई परतें खोल सकता है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.zo65c41/full/_20250618_on_sourtolerancebirds-1750356008097.jpg

खटमल शायद पहला शहरी परजीवी कीट था

हमें रेल्वे स्टेशनों पर मंडराते चूहे या घर की रसोई में विचरते कॉकरोच (cockroach infestation) तो खूब नज़र आते हैं और हम मान लेते हैं कि ये शहरी नाशी-कीटों (urban pests) में सर्वोपरि हैं। लेकिन हाल ही में बायोलॉजी लेटर्स में प्रकाशित एक अध्ययन कहता है कि इन सबसे पहले खटमल (bed bugs) ने शहरी बस्तियों को त्रस्त किया था। जी हां, वही खटमल जो ट्रेन की सीटों में, टॉकीज़ों में और घरों के बिस्तरों (mattress pests) में रहता है और खून चूसता है।

खटमलों की कई प्रजातियां हम पर आश्रित हैं और उनका जीवन हमारा खून पीकर ही चलता है। लेकिन जेनेटिक साक्ष्य बताते हैं सुदूर अतीत में खटमलों का पसंदीदा, या शायद एकमात्र, शिकार चमगादड़ हुआ करते थे। जेनेटिक प्रमाण यह भी बताते हैं कि लगभग 2 लाख 45 हज़ार वर्ष पूर्व कुछ खटमलों ने छलांग लगाकर मनुष्यों को अपना पोषक (evolution of bed bugs) बना लिया।

कहते हैं कि इस छलांग के चलते खटमलों के दो वंश उभरे थे – एक जो चमगादड़ों का खून चूसते रहे और मुख्य रूप से गुफाओं तथा युरोप और मध्य पूर्व के प्राकृत वासों में बसे रहे। दूसरे वंश ने आधुनिक बस्तियों में मनुष्य को ‘साथी’ बनाया (human-host bed bugs)।

इस प्रक्रिया को समझने के प्रयास में वर्जीनिया पोलीटेक्निक इंस्टीट्यूट (Virginia Tech) के जीव वैज्ञानिक वॉरेन बूथ और उनके साथियों ने चेक गणतंत्र में रहने वाले आम खटमलों की 19 किस्मों (10 चमगादड़ों का खून चूसने वाले और 9 पूर्णत: मनुष्यों पर आश्रित) के संपूर्ण जीनोम्स का विश्लेषण (genome analysis) किया। इन दो समूहों के डीएनए में हुए उत्परिवर्तनों की तुलना की और यह मॉडलिंग किया इस तरह के परिणाम आने के लिए प्रत्येक समूह की आबादी (population genetics of parasites) कितनी रही होगी। इस आधार पर बूथ समूह ने अनुमान लगाया कि प्रत्येक खटमल किस्म की आबादी में दसियों हज़ार सालों में कैसे उतार-चढ़ाव आए होंगे। उन्होंने पाया कि चमगादड़-सम्बंधी खटमलों की आबादी 60,000 सालों तक निरंतर घटती गई जबकि मानव सम्बंधी वंशों की आबादी भी 60,000 साल पहले घटी थी लेकिन 13,000 साल पहले और 7000 साल पहले यह फिर से बढ़ी (human settlements and pest evolution) थी।

इस परिवर्तन के कारण के तौर पर बूथ की टीम का मत है कि ठंडी होती जलवायु ने खटमलों की आबादी में शुरुआती गिरावट पैदा की लेकिन जब मनुष्य घुमंतू जीवन शैली छोड़कर बसने लगे (early human settlements) तो खटमलों ने नए आरामदायक जीवन का फायदा उठाया और उनकी आबादी बढ़ी। और 7000 साल पहले तो बड़ी शहरी बस्तियों (urban development) के विकास ने उन्हें एक और मौका दे दिया। यदि यह कालक्रम सही है, तो खटमल को दुनिया का सबसे पहला शहरी नाशी-कीट (world’s first urban pest) होने का खिताब मिलेगा जो पूरी तरह मनुष्यों पर आश्रित हैं। तुलना के लिए देखें कि कॉकरोच ने हमसे निकट सहवासी सम्बंध मात्र 2000 साल पहले तथा काले चूहे (black rats) ने मात्र 5000 साल पहले स्थापित किया है। खटमल तो हमारा खून तब से चूसते आ रहे हैं जब हमारे पूर्वज बस्तियां बनाकर रहने लगे थे। वैसे, कई शोधकर्ताओं का मत है कि खटमल को यह खिताब देने से पहले यह समझना होगा कि कई अन्य जंतुओं को लेकर ऐसे अध्ययन हुए ही नहीं हैं (pest history research gap)। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.zx58hd7/full/_20250527_on_bedbugspet-1748387389900.jpg

पंजों के जीवाश्म से जैव विकास पर नई रोशनी

हाल ही में ऑस्ट्रेलिया में मिले प्राचीन पंजों (Australia fossil discovery) के निशानों ने वैज्ञानिकों को हैरान कर दिया है। इन निशानों से पता चलता है कि सरीसृप (जैसे छिपकली) (ancient reptile footprints) और उनके निकट सम्बंधी शायद हमारे अनुमान से करोड़ों साल पहले ही धरती पर आ गए थे। नेचर पत्रिका में प्रकाशित अध्ययन के अनुसार, ये निशान एम्नीओट्स (early amniotes) प्राणियों ने बनाए होंगे। इस समूह में सरीसृप, पक्षी और स्तनधारी आते हैं।

एम्नीओट्स की खास बात यह है कि ये ज़मीन पर अंडे (land egg-laying animals) देते हैं या भ्रूण को गर्भ में पालते हैं। इन अंडों के चारों ओर एक झिल्ली (amniotic egg evolution) होती है जो उसे सूखने से बचाती है। इन जीवों का अब तक का सबसे प्राचीन जीवाश्म कनाडा से मिला था, जो करीब 31.9 करोड़ साल पुराना था। लेकिन अब ऑस्ट्रेलिया में मिले इन निशानों से पता चलता है कि ये प्राणी इससे भी कम से कम 3.5 करोड़ साल पहले (Carboniferous period) से, यानी 35.5 करोड़ साल पहले से मौजूद थे। यह वही समय है जब कार्बोनिफेरस युग (उभयचर जीवों और सरीसृपों के उद्भव के दौर) की शुरुआत हुई थी।

ये निशान ऑस्ट्रेलिया स्थित विक्टोरिया (paleontology site Victoria) इलाके में ब्रोकन नदी (broken river fossil) के किनारे बलुआ पत्थर की एक चट्टान में मिले हैं। वहां के स्थानीय ताउंगुरंग आदिवासी इस जगह को ‘बेरेपिट’ (Indigenous heritage site) कहते हैं। उसी चट्टान में कुछ पुराने जलीय जीवों के अवशेष भी मिले हैं, जो बताते हैं कि ये निशान वाकई उस दौर के हो सकते हैं।

इस प्रकार के नुकीले और मुड़े हुए पंजे सिर्फ सरीसृपों (distinct claw fossil) में पाए जाते हैं, जबकि उभयचरों (जैसे मेंढकों) के ऐसे पंजे नहीं होते हैं। साथ ही पेट या पूंछ घसीटने के कोई निशान नहीं मिले, जिससे लगता है कि ये जानवर चलने (reptilian locomotion) में अपने शरीर को ऊपर उठा सकते थे। हालांकि, कुछ वैज्ञानिक मानते हैं कि शायद ये जीव उथले पानी (shallow water) में चलते होंगे, न कि पूरी तरह सूखी ज़मीन पर।

बहरहाल, यह खोज जीवन के कालक्रम की समझ को बदलती है और बताती है कि ज़मीन पर अंडे देने वाले प्राणी (land animals origin) हमारी सोच से कहीं पहले अस्तित्व में आ चुके थे। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://img.haarets.co.il/bs/00000196-d377-db37-addf-f77708850000/2c/0c/c9ec73de48daaef9476790e36046/61535345.JPG?precrop=2828,2592,x0,y0&height=1310&width=1429

मिलिए कुछ नई समुद्री प्रजातियों से

गाहे-बगाहे आने वाली सुर्खियों से हमें इतना तो पता है कि वैज्ञानिक अन्य ग्रहों पर लगातार नए तरह के जीवन की तलाश में लगे हुए हैं। लेकिन एक सच्चाई यह भी है कि अभी हमारी पृथ्वी पर ही मौजूद जीवन के कई रूप अनदेखे, अनखोजे हैं, खासकर समुद्री (या जलीय) जीवन (marine biodiversity) रूप। ऐसा अनुमान है कि हम अब तक जितने भी समुद्री जीवन के बारे में जानते हैं वह वास्तव में मौजूदा जैव-विविधता का मात्र 10 प्रतिशत (ocean species discovery) है।

वैज्ञानिक अनखोजे जीवों की खोज में भी हैं; कभी इरादतन खोजते हुए तो कभी इत्तेफाकन वैज्ञानिकों को नई-नई प्रजातियां (new marine species) मिलती हैं। दिलचस्प बात है कि गैर-मुनाफा संस्था ओशिएन सेंसस द्वारा चलाए जा रहे एक खोजी अभियान ने तकरीबन 850 नई समुद्री प्रजातियां खोजी (deep sea exploration) हैं। वाकई कितना कुछ खोजा जाना बाकी है। तो चलिए जानते हैं पिछले कुछ समय में विभिन्न समूहों द्वारा खोजी गई कुछ नई दिलचस्प समुद्री प्रजातियों के बारे में।

अकॉर्डियन कृमि – सबसे पहले इसे 2021 में देखा गया था। स्पेन की अराउसा नदी के मुहाने से लगभग एक किलोमीटर दूर और महज 32 मीटर गहराई पर एक गोताखोर ने इसे एक सीपी के नीचे देखा था। इसकी खास बात है कि यह अकॉर्डियन की तरह फैल-सिकुड़ (accordion worm discovery) सकता है। फैलने पर इसकी पूरी लंबाई 25 सेंटीमीटर होती है, और सिकुड़ने पर यह मात्र 5 सेंटीमीटर लंबा रह जाता है। सिकुड़ने पर इसके शरीर पर छल्ले दिखाई देते हैं, जिनकी संख्या करीब 60 है। इन्हीं छल्लों की वजह से इसे आम बोलचाल में अकॉर्डियन कृमि कहा गया है, वैसे औपचारिक द्विनाम पद्धति में इसे पैरारोसा विगारे (Pararosa vigarae) नाम दिया गया है। यह रिबन कृमि की एक नई प्रजाति है। हालांकि इसे रिबन कृमि की एक नई प्रजाति कहना इतना सीधा काम नहीं था। क्योंकि सभी रिबन कृमि देखने में एक जैसे दिखते हैं। उन्हें मात्र देखकर अलग-अलग प्रजाति नहीं कहा जा सकता। इसलिए डीएनए अनुक्रमण (DNA barcoding marine species) किया गया और हाल ही में वैज्ञानिकों ने इसे एक नई प्रजाति की मान्यता दी है।

पिगमी पाइपहॉर्स – दक्षिण अफ्रीका के नज़दीक हिंद महासागर में पिगमी पाइपहॉर्स (pygmy pipehorse Indian Ocean) की यह प्रजाति मिली है। महज़ 4 सेंटीमीटर लंबा यह जीव सीहॉर्स, सीड्रैगन और पाइपफिश का सम्बंधी है और सिंग्नेथिडे कुल का सदस्य है, जिसे साइलिक्स नोसी (Cylix nkosi) नाम दिया गया है। अपने सम्बंधियों की तरह यह भी छद्मावरणधारी है। यानी इसका हुलिया अपने परिवेश, अपने प्राकृतवास (कोरल रीफ) से इतना मेल खाता है कि इसे आसानी से नहीं ढूंढा जा सकता है; इसे देखने के लिए गोताखोर और इसके शिकारियों को पैनी निगाहें चाहिए (camouflage marine animal)। खास बात यह है कि इस वंश का यह पहला सदस्य है जो अफ्रीका के नज़दीकी समुद्र में मिला है, वर्ना अब तक इसके बाकी सदस्य न्यूज़ीलैंड के पास ठंडे क्षेत्रों में पाए गए हैं।

गिटार शार्क – मोज़ाम्बिक और तंज़ानिया के नज़दीकी समुद्र में करीब 200 मीटर की गहराई पर गिटार शार्क (guitarfish discovery Africa) की एक नई प्रजाति खोजी गई है। इस प्रजाति के मिलने के बाद गिटार शार्क प्रजातियों की कुल संख्या 38 हो गई है (Rhynobatos species list)। गिटार शार्क की खास बात उनका चपटा शरीर और चौड़ा सिर है, और इसी बनावट के कारण उन्हें गिटार शार्क कहा जाता है। इस प्रजाति को डेविड एबर्ट (David Ebert shark expert) ने खोजा है जिन्होंने अपना करियर अनभिज्ञ शार्क प्रजातियों को खोजने में लगाया हुआ है। इस गिटार शार्क को राइनोबाटोस कुल में रखा गया है। लेकिन दुखद बात यह है कि गिटार शार्क की दो-तिहाई प्रजातियां जोखिमग्रस्त (endangered shark species) की श्रेणी में हैं।

एक तरह का शंख टूरीड्रूपा मैग्नीफिका – प्रशांत महासागर में स्थित दो द्वीप न्यू कैलेडोनिआ और वनौतू के नज़दीक समुद्र में करीब 500 मीटर की गहराई पर यह प्रजाति (Turidrupa magnifica shell) मिली है। शिकारी प्रवृत्ति का यह गैस्ट्रोपॉड हालिया पहचानी गई 100 टूरीड गैस्ट्रोपॉड में से एक है। इस शंख की खासियत इसके विषैले और नुकीले दांत (venomous sea snail) हैं, जिन्हें यह अपने शिकारियों में चुभोकर उनका शिकार करता है।

स्क्वैट लोबस्टर – श्मिट ओशिएन इंस्टीट्यूट के खोजी अभियान में यह चिली के समुद्री तट के नज़दीक स्थित नाज़्का रिज (squat lobster Nazca Ridge) पर लगभग 400 मीटर की गहराई पर मिला है। वैज्ञानिकों ने इसे गैलेथिया वंश (Galathea genus crustacean) के सदस्य के रूप में पहचाना है। दिलचस्प बात यह है कि गैलेथिया वंश का यह पहला सदस्य है जो दक्षिण-पूर्वी प्रशांत महासागर में पाया गया है (new crustacean species discovery)। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.vice.com/wp-content/uploads/sites/2/2025/05/New-Venomous-Worm-That-Folds-Like-an-Accordion-Discovered-by-Divers.jpg?w=1200
https://divernet.com/wp-content/uploads/2024/09/R.Smith_Cylix.nkosi_02-1024×794.jpg
https://s.yimg.com/ny/api/res/1.2/uAy9DV61SY9H6HEyM3f5mw–/YXBwaWQ9aGlnaGxhbmRlcjt3PTk2MDtoPTU1Ng–/https://media.zenfs.com/en/cbs_news_897/ddcce9771e15cf569bf63620be9b417c
https://s.yimg.com/ny/api/res/1.2/EbyBYtfaEV8TKyg93au_AA–/YXBwaWQ9aGlnaGxhbmRlcjt3PTI0MDA7aD0xMzUw/https://media.zenfs.com/en/cbs_news_897/cc2013221dbd2b26db85363d3059903c
https://oceancensus.org/wp-content/uploads/2025/03/aaa-1024×528.jpg