कोविड और 2020: एक अनोखा वर्ष

र्ष 2020 में एक घातक और अज्ञात वायरस ने विश्व भर में कहर बरपाया जिसमें करोड़ों लोग संक्रमित हुए हैं, 15 लाख से अधिक मौतें हो चुकी हैं, और पूरे विश्व को आर्थिक संकट से गुज़रना पड़ा। हालांकि, इस वर्ष वैज्ञानिक अनुसंधान एवं विकास के अन्य क्षेत्रों में काफी काम हुआ है लेकिन कोविड-19 महामारी ने विज्ञान को असाधारण रूप से प्रभावित किया है।

इस वायरस का पता चलते ही विश्व भर के शोध समूहों ने इसके जीव विज्ञान का अध्ययन किया, कुछ समूह नैदानिक परीक्षण की खोज करने में जुट गए तो कुछ ने जन-स्वास्थ्य उपायों पर काम किया। कोविड-19 के उपचार और टीका विकसित करने के प्रयास किए गए। किसी अन्य संक्रमण के संदर्भ में ऐसी फुर्ती कभी नहीं देखी गई थी। महामारी ने शोधकर्ताओं के कामकाज और व्यक्तिगत जीवन को भी प्रभावित किया। वायरस के प्रभाव का अध्ययन न करने वालों के प्रोजेक्ट्स में देरी हुई, करियर में अस्थिरता आई और अनुसंधान फंडिंग में बाधा आई।      

एक नया वायरस

जनवरी में चीन के वुहान प्रांत में मिले पहले मामले के एक माह के भीतर शोधकर्ताओं ने इसका कारण खोज लिया था: एक नया कोरोनावायरस, जिसे सार्स-कोव-2 नाम दिया गया। 11 जनवरी तक, एक चीनी-ऑस्ट्रेलियाई टीम ने वायरस के जेनेटिक अनुक्रम को ऑनलाइन प्रकाशित कर दिया। इसके बाद वैज्ञानिकों ने यह चौंकने वाली खोज की कि यह वायरस एक से दूसरे व्यक्ति में फैल सकता है।

फरवरी तक शोधकर्ताओं ने बता दिया था कि यह वायरस कोशिकाओं की सतह पर उपस्थित ACE2 ग्राही नामक प्रोटीन से चिपककर कोशिका में प्रवेश करता है। फेफड़ों और आंतों सहित शरीर के कई अंगों की कोशिकाओं पर यह ग्राही पाया जाता है। इसलिए कोविड-19 के लक्षण निमोनिया से लेकर अतिसार और स्ट्रोक तक दिखाई देते हैं। यह वायरस अपने ग्राही से 2003 के श्वसन सम्बंधी सार्स-कोव वायरस की तुलना में 10 गुना अधिक मज़बूती से जुड़ता है।

मार्च में कुछ वैज्ञानिकों ने बताया कि वायरस से भरी छोटी-छोटी बूंदें (एयरोसोल) लंबे समय तक हवा में उपस्थित रह सकती है और संभवत: संक्रमण में महत्वपूर्ण भूमिका निभाती हैं। लेकिन कई शोधकर्ता असहमत थे और सरकारों एवं जन-स्वास्थ्य संगठनों को यह मानने में काफी समय लगा कि वायरस इस माध्यम से भी फैल सकता है। यह भी पता चला कि लक्षण विकसित होने से पहले ही लोग वायरस फैला सकते हैं। एक हालिया विश्लेषण से यह बात सामने आई है कि सार्स-कोव-2 के आधे मामले लक्षणहीन लोगों द्वारा संक्रमण फैलाने के कारण हुए हैं।

गौरतलब है कि इस वायरस का स्रोत अभी भी एक रहस्य बना हुआ है। साक्ष्यों के अनुसार यह वायरस चमगादड़ से उत्पन्न हुआ और संभवत: एक मध्यवर्ती जीव के माध्यम से मनुष्यों में आ गया। बिल्लियों और मिंक सहित कई जंतु सार्स-कोव-2 के प्रति अतिसंवेदनशील पाए गए हैं। इसके लिए WHO ने सितंबर में मध्यवर्ती जीव का पता लगाने के लिए एक विशेष टीम का गठन किया। इस जांच में चीन सहित कई देशों को शामिल किया गया है। इस बीच अमेरिका के राष्ट्रपति डोनाल्ड ट्रम्प और अन्य नेताओं ने बिना किसी पुख्ता सबूत के दावा किया कि सार्स-कोव-2 चीन की प्रयोगशाला में विकसित करके छोड़ा गया है। वैज्ञानिकों ने ऐसी किसी भी संभावना से इन्कार किया है।

नियंत्रण के प्रयास

महामारी की शुरुआत से ही महामारी वैज्ञानिकों ने वायरस प्रसार का अनुमान लगाने के लिए कई मॉडल विकसित किए और इसे जन-स्वास्थ्य के विभिन्न उपायों से नियंत्रित करने का सुझाव दिया। टीके या किसी इलाज के अभाव में लॉकडाउन जैसे गैर-चिकित्सीय हस्तक्षेप अपनाए गए। जनवरी में वुहान में सबसे पहले लॉकडाउन लगाया गया, जिसे बाद में अधिकांश देशों द्वारा उसी तरह के प्रतिबंधों के साथ अपनाया गया।

लेकिन लॉकडाउन का आर्थिक प्रभाव काफी गंभीर रहा और कई देशों को वायरस पर नियंत्रण प्राप्त होने से पहले ही लॉकडाउन समाप्त करना पड़ा। वायरस के हवा के माध्यम से प्रसार की अनिश्चितता को देखते हुए मास्क लगाने को लेकर भी बहस छिड़ गई जिसने, विशेष रूप से अमेरिका में, राजनीतिक रूप ले लिया। इसी बीच वायरस को षड्यंत्र बताने वाले सिद्धांत, झूठे समाचार, और अधकचरा विज्ञान भी वायरस की तरह काफी तेज़ी से फैलते गए। यह बात भी उछली कि वायरस को नियंत्रित करने की बजाय उसे अपना रास्ता तय करने दिया जाए।

वैज्ञानिकों ने इस संकट से बाहर आने के लिए व्यापक स्तर पर सार्स-कोव-2 के परीक्षण करने का भी सुझाव दिया। लेकिन कई देशों में बुनियादी उपकरण और पीसीआर परीक्षण में उपयोग होने वाले रसायनों की कमी के चलते काफी अड़चनें आर्इं। इसके मद्देनज़र कई समूहों ने जीन-संपादन विधि CRISPR और त्वरित एंटीजन जांच के आधार पर नए त्वरित परीक्षण विकसित करने का काम किया जो शायद भविष्य में उभरने वाले रोगों के निदान में मदद मददगार होगा। 

वियतनाम, ताइवान और थाईलैंड जैसे देशों ने व्यापक लॉकडाउन, व्यापक स्तर पर परीक्षण, मास्क लगाने के आदेश और डिजिटल माध्यम से कांटैक्ट ट्रेसिंग को अपनाकर वायरस पर शुरुआत में ही नियंत्रण पा लिया। सिंगापुर, न्यूज़ीलैंड और आइसलैंड ने बड़ी संख्या में परीक्षण एवं ट्रेसिंग तकनीक और सख्त आइसोलेशन की मदद से वायरस को लगभग पूरी तरह से खत्म किया और सामान्य जीवन बहाल किया। इन सफलताओं का मुख्य सूत्र सरकारों की तत्परता और निर्णायक रूप से कार्य करने की इच्छा रहा। शुरुआती और आक्रामक कार्यवाहियों ने संक्रमण की रफ्तार को कम किया।

दूसरी ओर, कई अन्य देशों के अधिकारियों के लंबित फैसलों, वैज्ञानिक सलाहों को अनदेखा करने और परीक्षणों को बढ़ाने में हुई देरी की वजह से संक्रमण दर में वृद्धि हुई और दूसरी लहर का सामना करना पड़ा। इसी कारण अमेरिका और पश्चिमी युरोप में कोविड-19 संक्रमण और मौतें एक बार फिर बढ़ रही हैं।

त्वरित टीके

इसी बीच वैज्ञानिक प्रयासों ने एक ऐसी बीमारी के विरुद्ध टीके प्रदान किए जिसके बारे में एक वर्ष पहले तक कोई जानता तक नहीं था। कोविड-19 के विरुद्ध टीके काफी तेज़ी से विकसित किए गए। WHO के अनुसार नवंबर में 200 से अधिक टीके विकसित किए जा रहे थे जिनमें से 50 टीके नैदानिक परीक्षणों के विभिन्न चरणों से गुज़र रहे हैं। इनको विकसित करने में कई तकनीकों का उपयोग किया जा रहा है। इनमें रासायनिक रूप से निष्क्रिय किए गए वायरस का उपयोग करने की पुरानी तकनीक के साथ-साथ नई तकनीकों का भी उपयोग किया गया है।

प्रभाविता के परीक्षणों के आधार पर दवा कंपनी फाइज़र और जर्मन बायोटेक्नोलॉजी कंपनी बायोएनटेक, अमेरिकी कंपनी मॉडर्ना और दवा कंपनी एस्ट्राज़ेनेका एवं ऑक्सफोर्ड युनिवर्सिटी के टीके कोविड-19 के विरुद्ध प्रभावी रहे हैं। पिछले माह, फाइज़र को आपातकालीन स्वीकृति के तहत यूके और अमेरिका में टीके के व्यापक उपयोग की अनुमति मिली है। आने वाले हफ्तों में युरोपीय संघ द्वारा युरोप में भी इसके उपयोग की अनुमति मिलने की उम्मीद है। चीन और रूस में विकसित टीकों को अंतिम चरण के परीक्षण पूरा होने से पहले ही उपयोग की मंज़ूरी मिल चुकी है।

गौरतलब है कि फाइज़र और मॉडर्ना ने लगभग 95 प्रतिशत प्रभाविता का दावा किया है जबकि एस्ट्राज़ेनेका और ऑक्सफोर्ड टीकों की प्रभाविता अभी तक अनिश्चित है। लेकिन एक महत्वपूर्ण सवाल है कि यह टीका, विशेष रूप से वृद्ध लोगों में, किस हद तक गंभीर रोग से बचाव कर सकता है और यह कितने समय तक सुरक्षा प्रदान करेगा? यह तो अभी तक वैज्ञानिकों को भी नहीं मालूम कि यह टीका लोगों को वायरस फैलाने से रोक पाएगा या नहीं।

एक सवाल लोगों की टीकों तक पहुंच का भी है। अमेरिका, ब्रिटेन, युरोपीय संघ के सदस्य और जापान जैसे अमीर देशों ने टीके की अरबों खुराकों की अग्रिम-खरीद कर ली है। कम और मध्यम आय वाले देशों के लिए टीका उपलब्ध कराने के लिए कई अमीर देशों का समर्थन प्राप्त है। टीकों के भंडारण और वितरण में काफी समस्याएं आ सकती हैं क्योंकि इन टीकों को शून्य से 70 डिग्री सेल्सियस नीचे (-70 डिग्री पर) रखना अनिवार्य है।

उपचार: नए-पुराने 

महामारी को समाप्त करने के लिए सिर्फ टीका काफी नहीं है। नियंत्रण टीके और दवाइयों के सम्मिलित उपयोग से ही संभव हो सकता है। कुछ संभावित उपचारों के मिले-जुले परिणाम सामने आए हैं। मलेरिया की दवा हाइड्रॉक्सीक्लोरोक्वीन के अलावा एचआईवी की दो दवाओं के कॉकटेल ने शुरुआती परीक्षणों में कुछ सकारात्मक परिणाम तो दिखाए लेकिन बड़े स्तर पर ये खास प्रभावी नहीं रहे।

अप्रैल में एक बड़े नैदानिक परीक्षण में रेमेडिसेविर नामक एंटीवायरल दवा का कोविड-19 में काफी समय तक उपयोग किया जाता रहा लेकिन बाद के अध्ययनों से पता चला कि इस दवा के उपयोग से मौतों में किसी प्रकार की कमी नहीं होती है। नवंबर में WHO ने इसका उपयोग न करने की सलाह दी।

वैसे अमेरिका, भारत, चीन और लैटिन अमेरिका के नेताओं द्वारा कोविड-19 के संभावित उपचारों का काफी राजनीतिकरण किया गया। इसमें हाइड्रॉक्सीक्लोरोक्वीन सहित कई अन्य अप्रामाणिक उपचारों का काफी प्रचार हुआ। अधिकारियों ने ऐसे कई उपचारों के आपातकालीन उपयोग की मंज़ूरी भी दे दी, जिसके चलते नैदानिक परीक्षणों को काफी नुकसान हुआ और सुरक्षा से जुड़ी चिंताएं पैदा हुई। 

जून माह में डेक्सामेथासोन नामक प्रतिरक्षा-दमनकारी स्टेरॉइड तथा प्रतिरक्षा प्रणाली को लक्षित करने वाली दवा टॉसिलिज़ुमैब ने भी कुछ गंभीर रोगियों में सकारात्मक परिणाम दिए हैं। इसके साथ ही कुछ परीक्षण कोविड-19 के हल्के लक्षणों के रोगियों के साथ भी किए गए हैं ताकि यह पता लगाया जा सके कि ये गंभीर बीमारी की संभावना को कितना कम करते हैं। कोविड-19 से स्वस्थ हो चुके रोगियों का ब्लड प्लाज़्मा भी उपयोग किया गया। कुछ वैज्ञानिकों का मानना था कि मोनोक्लोनल एंटीबॉडी के उपयोग से सार्स-कोव-2 को निष्क्रिय किया जा सकता है लेकिन अध्ययनों से साबित नहीं हो पाया है। कुछ वैज्ञानिकों के अनुसार एक-एक व्यक्ति की हालत को देखकर कोविड-19 के उपचार में दवाइयों का मिला-जुला उपयोग करना होगा। 

शोध कार्यों में बाधा

द्वितीय विश्व युद्ध के बाद ऐसा पहली बार हुआ है जब वैज्ञानिक अनुसंधान इतने व्यापक रूप से बाधित हुआ है। वायरस के फैलते ही मार्च से कई युनिवर्सिटी कैंपस बंद कर दिए गए। प्रयोगशालाओं में आवश्यक प्रयोगों को छोड़कर अन्य सभी प्रयोगों को रोक दिया गया, फील्ड वर्क रद्द कर दिए गए और सम्मेलन वर्चुअल होने लगे। महामारी से सीधे सम्बंध न रखने वाले प्रोजेक्टों की रफ्तार थम गई। अचानक घर से काम करने को मजबूर शोधकर्ता परिवार की देखभाल और लायब्रेरी जैसे संसाधनों की कमी से जूझते रहे। कई छात्र फील्डवर्क और प्रयोगशाला के डैटा के बिना अपनी डिग्री पूरी नहीं कर पाए तो परिवहन के बंद होने से नौकरी की तलाश में भी काफी परेशान आई।

देखा जाए तो सबसे अधिक प्रभावित वे महिलाएं, माताएं, प्रारंभिक शोधकर्ता और ऐसे वैज्ञानिक रहे जिनका विज्ञान में प्रतिनिधित्व काफी कम है। इस महामारी ने एक और कारक बढ़ा दिया जिसके कारण विज्ञान के क्षेत्र में उनका भाग लेना काफी कठिन हो गया है। अप्रैल और मई में ब्राज़ील के 3345 शिक्षाविदों पर किए गए एक सर्वेक्षण में पाया कि इस महामारी के दौरान शोध पत्र प्रस्तुत न कर पाने और समय सीमा पर काम पूरा न करने में सबसे अधिक प्रतिशत अश्वेत महिलाओं का रहा। ऐसे ही आंकड़े अन्य देशों में भी देखे जा सकते हैं।

एक अच्छी बात यह है कि विश्व भर की सरकारों ने उच्च शिक्षा और शोध कार्यों के लिए वित्तीय सहायता भी प्रदान की है। उदाहरण के लिए ऑस्ट्रेलिया की सरकार ने 2021 में युनिवर्सिटी शोध कार्यों के लिए एक अरब ऑस्ट्रेलियाई डॉलर की राशि प्रदान की है। अगस्त तक कई समुदायों में संक्रमण दर बढ़ने के बावजूद अमेरिका और युरोप के कई विश्वविद्यालयों ने अपने कैंपस खोलने का फैसला किया, जबकि बड़े प्रकोप से ग्रसित भारत और ब्राज़ील जैसे देश में अभी तक पूरी तरह नहीं खोले गए हैं।   

वैसे इस महामारी में कुछ सकारात्मक बातें भी सामने आई हैं। लॉकडाउन के कारण सीमाओं के बंद होने के बाद भी कई क्षेत्रों में अंतर्राष्ट्रीय सहयोग में बढ़ोतरी हुई है। शोधकर्ताओं ने अपने डैटा को खुले तौर पर साझा करना शुरू किया है। अधिकांश प्रकाशकों ने कोविड से जुड़े लेखों को निशुल्क कर दिया है। अस्थायी रूप से ही सही, लेकिन शोध परंपरा में बदलाव आए हैं। मात्र उत्पादकता की ओर कम ध्यान देने से काम और जीवन के बीच संतुलन जैसे व्यापक मुद्दों पर चर्चा की जा रही है। उम्मीद है कि महामारी के दौरान हुए ऐसे सकारात्मक बदलाव आगे भी जारी रहेंगे।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://gumlet.assettype.com/nationalherald/2020-03/4de966f6-0208-42e2-97d7-5a7412a7e755/outbreak_coronavirus_world_1024x506px.jpg?w=1200&h=675

नर चीतों के भी अड्डे होते हैं

हाल ही में हुए एक अध्ययन में पता चला है कि अफ्रीका में पाए जाने वाले नर चीते कुछ खास पेड़ों या बड़ी चट्टानों को अपना ‘अड्डा’ बना लेते हैं। इन अड्डों की मदद से वे अपने लिए साथी तलाशते हैं और अन्य नर चीतों को संकेत देते हैं। इस तरह ये अड्डे उनके संचार केंद्र बन जाते हैं। शोधकर्ताओं को लगता है कि चीतों के संचार केंद्र के बारे में जानकारी चीतों को नाराज़ किसानों के हमले से बचा सकती है।

1980 के दशक में युनिवर्सिटी ऑफ ब्रिस्टल के व्यवहार पारिस्थितिकी विज्ञानी टिम कैरो ने पाया था कि चीतों का सामाजिक ढांचा अनोखा होता है: मादा चीता का अधिकार क्षेत्र बहुत विशाल होता है, और यह क्षेत्र कई नर चीतों के छोटे-छोटे अधिकार क्षेत्रों पर फैला होता है। अधिकार क्षेत्र के लिए नर चीतों में भयानक प्रतिस्पर्धा रहती है, अपने अधिकार क्षेत्र की रक्षा के लिए वे एक-दो असम्बंधित नर चीतों के साथ सांठ-गांठ भी बना लेते हैं। और बिना क्षेत्र वाले ‘बेघर’ नर चीते (फ्लोटर्स) अन्य नर चीतों के क्षेत्र पर कब्ज़ा जमाने की फिराक में घूमते रहते हैं।

कैरो ने यह भी पाया था कि चीतों के अपने कुछ खास स्थान होते हैं (जैसे कोई पेड़ या बड़ी चट्टान) जहां वे नियमित रूप से वे अपनी गंध छोड़कर जाते हैं। लीबनिज़ इंस्टीट्यूट फॉर ज़ू एंड वाइल्डलाइफ रिसर्च के स्थानिक पारिस्थितिकी विज्ञानी जोर्ग मेलज़ाइमर को लगा कि ये अड्डे महत्वपूर्ण हो सकते हैं।

इसलिए उनकी टीम ने 2007 से 2018 के बीच 106 वयस्क चीतों पर रेडियो कॉलर लगाए। ये चीते सेंट्रल नामीबिया में लगभग 11,000 वर्ग किलोमीटर में फैले मवेशियों के फार्म के पास रहते थे। शोधकर्ताओं ने पाया कि अधिकार क्षेत्र से लैस चीते अपना आधा वक्त ‘अड्डों’ पर बिताते हैं, और पेशाब करके अपनी पहचान (गंध) वहां छोड़ देते हैं। फ्लोटर चीते भी नियमित आते-जाते हैं, लेकिन वे वहां सूंघने मात्र के लिए ही रुकते हैं। इन जगहों पर कभी-कभी मादा भी आती है और कामोन्माद के दौरान वहां अपनी पहचान छोड़ जाती है। ये अड्डे आम तौर पर नर चीते के अधिकार क्षेत्र के केंद्र में होते हैं और किसी चाय-पान की मशहूर दुकान की तरह काम करते हैं, जहां चीते अपने लिए बेहतर साथी की तलाश करते हैं। जो स्थान अड्डा बन चुके हैं वे स्थान हमेशा अड्डे बने रहते हैं। अधिकार क्षेत्र पर नए चीते का अधिकार हो जाए, तब भी अड्डों में बदलाव नहीं होता।

चीतों के अड्डों की जानकारी संरक्षण की दृष्टि से महत्वपूर्ण हो सकती है। कई जानवरों की तरह चीते भी जोखिम में हैं। उनके सिकुड़ते आवास स्थल, शिकार की घटती आबादी और मनुष्यों के साथ उनके बढ़ते संघर्ष के कारण आज चीतों की आबादी महज़ 7000 रह गई है।

हालांकि चीते बड़े मवेशियों का शिकार नहीं करते लेकिन हिरण, चिंकारा वगैरह ना मिलने पर वे बछड़ों का शिकार करते पाए गए हैं। नामीबिया और अन्य जगहों पर किसान अपने पशुओं की रक्षा या प्रतिशोध में चीतों को मार देते हैं। इस तरह की हत्याएं चीतों के लिए मुख्य खतरा मानी जा रही हैं।

अध्ययन में शोधकर्ताओं ने उन 35 किसानों से संपर्क किया जिनके मवेशी चीते के शिकार बने थे। इनमें से छह किसानों की ज़मीन पर चीतों का अड्डा था, और उन्होंने मवेशियों पर हमला भी किया था। इसलिए शोधकर्ताओं ने किसानों को सुझाव दिया कि अगर वे अपने मवेशियों और बछड़ों को इन अड्डों से दूर ले जाएं तो चीते इन्हें नहीं मारेंगे। किसानों द्वारा सलाह मानने पर पाया गया कि चीतों के द्वारा बछड़ों के शिकार में 86 प्रतिशत की कमी आई। ये नतीजे प्रोसीडिंग्स ऑफ दी नेशनल एकेडमी ऑफ साइंसेज़ में प्रकाशित हुए हैं।

शोधकर्ता बताते हैं कि वास्तव में समस्या चीतों के कारण नहीं बल्कि स्थान के कारण थी। वहीं यह अध्ययन सीधे तौर पर तो सभी बिल्ली प्रजातियों पर लागू नहीं होता क्योंकि उनकी सामाजिक संरचना और अड्डे अलग तरह के होते हैं, लेकिन यह अध्ययन वन्य जीव और मनुष्य के बीच के संघर्ष के बारे में सोचने का एक नया दृष्टिकोण ज़रूर देता है। शोधकर्ताओं की सलाह को उन क्षेत्रों में लागू किया जा सकता है जहां चीतों, कृषि और पशुओं के बीच संघर्ष दिखता है। साथ ही अध्ययन हमें संरक्षण प्रबंधन की नीतियां बनाने के पहले जंगली जानवरों के व्यवहार को समझने का महत्व भी बताता है।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/article_main_image_-1280w__no_aspect/public/Cheetah_comms_hubs_1280x720.jpg?itok=fYfdIQ_X

छिपकली द्वारा परागण का अनूठा मामला – डॉ. किशोर पंवार

धिकांश पौधों में वंशवृद्धि बीजों के माध्यम से होती है जो शंकुधारी पौधों में शंकु और बीजधारी पौधों में फूलों से बनते हैं। फूलों का परागण होने का नतीजा होते हैं फल। जब एक फूल का पराग किसी दूसरे या उसी फूल के मादा भाग पर पहुंचता है या किसी अन्य माध्यम से पहुंचाया जाता है तो यह क्रिया परागण कहलाती है।

सुंदर सुगंधित रंगीन फूलों के मालिक पौधों में यह कार्य तरह-तरह के कीटों द्वारा संपन्न होता है जिसे विज्ञान की भाषा में एंटोमोफिली कहते हैं। यह एक लेन-देन की प्रक्रिया है जिसमें परागकणों और मकरंद के ‘लेन’ और बदले में कुछ परागकणों का फूलों का मादा भाग पर ‘देन’ होता है। परागकण दरअसल  पौधों की नर प्रजनन इकाइयां हैं जिन्हें हम जंतुओं में शुक्राणुओं के नाम से जानते हैं। जंतुओं के शुक्राणु में तो गति की क्षमता होती है अर्थात वे सचल हैं। परंतु परागकण-रूपी शुक्राणु अचल होते है। अत: इन इकाइयों को तरह-तरह के जंतु अपनी सवारी कराते हैं। परागकणों को अपनी सवारी उपलब्ध कराने वाले जंतुओं को हम परागणकर्ता कहते हैं और परागकणों का यह स्थानांतरण परागण कहलाता है।

जब हम परागणकर्ताओं की एक सामान्य सूची देखते हैं तो उसमें पक्षियों और कीट-पतंगों के नाम प्रमुखता से उभरते हैं। चमगादड़ और घोंघे जैसे जीव भी इस सूची में अपना स्थान पाते हैं। परंतु छिपकली (जो ड्रैगन और डायनासौर की पूर्वज मानी जाती है) का नाम इस सूची में नहीं मिलता। हाल ही में इस तरह की कुछ खोज हुई है जो परागण में इनकी इस भूमिका को उजागर करती है। जैसे गुथरीया यानी हिडन फ्लॉवर और ट्रोकेशिया ब्लेकबर्मियाना में परागण।

लगभग 90 प्रतिशत फूलधारी पौधे अपने परागणकर्ता को आकर्षित करने के लिए चटख भड़कीले रंगों का उपयोग करते हैं। परंतु गुथरिया के फूलों की बात कुछ अलग ही है – ये आसानी से नज़र नहीं आते और अन्य फूलों की तरह लाल-पीले रंगों के भी नहीं हैं। इस पौधे के सामान्य नाम ‘हिडन फ्लॉवर’ से ही पता चलता है कि इसके फूल ज़मीन की सतह पर पत्तियों के नीचे छिपे रहते हैं, और पत्तियों की ही तरह हरे रंग के होते हैं। हालांकि तेज़ गंध के मालिक ये फूल मकरंद से भरे होते हैं। इससे पता चलता है कि कोई तो जंतु है जो मीठा-पौष्टिक मकरंद पाने के लिए इन फूलों को ढूंढ निकालता है। परंतु सवाल यह है कि वह है कौन?

गुथरीया केपेंसिस का सबसे पहले 1876 में वर्णन किए जाने के लगभग 150 साल बाद भी इसके परागण की प्रक्रिया के बारे में कोई जानकारी नहीं थी। इसमें नर और मादा फूल अलग-अलग होते हैं, पास-पास, एक ही पौधे पर। घंटीनुमा नर फूलों के सिरों पर 5 हरे रंग के पुंकेसर लगे होते हैं। फूलों के केंद्र में पांच नारंगी रंग की मकरंद ग्रंथियां स्पष्ट रूप से देखी जा सकती हैं। मादा फूल में पंचमुखी लौंग के आकार का वर्तिकाग्र बाहर झांकता रहता है।

दक्षिण अफ्रीका के क्वा-ज़ुलु नेटल विश्वविद्यालय और नेदरलैंड की पारिस्थितिकी शोध प्रयोगशाला के शोधार्थियों ने इनके परागण की पहेली का जवाब ढूंढ निकाला है और जर्नल आफ इकॉलॉजी में प्रकाशित किया है। इस दल ने दक्षिण अफ्रीका के विश्व धरोहर स्थल मलोटी-ड्रेकन्सबर्ग राष्ट्रीय उद्यान में इन फूलों को खोजा है। इन फूलों के परागणकर्ता की तलाश के लिए वहां पर गति संवेदी कैमरे लगाए गए और चूहे, गिलहरी जैसे कृंतकों को ललचाने के लिए मूंगफली के दाने भी डाले गए। इस शोध दल का यह विश्वास था कि इन फूलों का परागण निशाचर कृंतकों द्वारा ही होता होगा। अत: कैमरे रात की रिकॉर्डिंग के लिए लगाए गए। पांच दिन के निराशाजनक नतीजों के बाद दल ने अपनी कार्ययोजना को बदलते हुए दिन में भी रिकॉर्डिंग चालू की और कैमरे की गति संवेदनशीलता और बढ़ा दी ताकि छोटे जीव भी इसकी पकड़ में आ सकें। इस युक्ति ने काम किया; एक रात की रिकॉर्डिंग में एक छिपकली नज़र आई जो फूलों के पास आ-जा रही थी। यह लगभग 26 सेंटीमीटर लंबी ड्रैकनबर्ग क्रैग लिज़ार्ड (सुडोकारडायल्स सबविरिडिस) थी। शोधकर्ताओं का कहना है कि उस क्षेत्र में यह बहुतायत से मिलती है परंतु सोचा नहीं था कि छिपकली भी एक प्रमुख परागणकर्ता हो सकती है।

वनस्पति विज्ञानियों के अनुसार छिपकलियों द्वारा फूलों का परागण सबसे बिरला एवं सर्वाधिक कम अध्ययन किया गया परागण तंत्र है। पूरी दुनिया में पहला ऐसा प्रकरण मॉरिशस के मेडेरा द्वीप में देखा गया था। तब से लगभग 40 गेको और छिपकलियों का पता लगाया जा चुका है जो फूलों के आसपास देखी जाती हैं। परंतु फूलों के आसपास मंडराने का मतलब यह नहीं है कि वे उनका परागण भी करती हों। अधिकतर छिपकलियां तो फूलों को खाती है।

पूरी दुनिया में छिपकलियां केवल पांच प्रजातियों के पौधों की परागणकर्ता के रूप में पहचानी गई हैं और मात्र दो प्रजातियां ही प्राथमिक परागणकर्ता के रूप में सरीसृपों की मदद लेती हैं। छिपकलियों द्वारा परागण अक्सर मुश्किल और दुर्गम पर्यावरण में ही होता है। शोधकर्ता यह पता लगाने का प्रयास कर रहे हैं कि वे कौन से लक्षण हैं जो छिपकलियों को फूलों की ओर आकर्षित करते हैं, वे कैसे विकसित हुए हैं और कितने महत्वपूर्ण हैं।

यह पता लगाने के लिए उन्होंने प्रयोगशाला में कुछ नर फूलों पर एक रंगीन पाउडर छिड़क दिया और पाया कि गुलाबी गालों वाली इस छिपकली के मुंह पर रंग लगा था और इस तरह इसने परागकणों को मादा फूलों पर फैला दिया है।

ड्रैकनबर्ग क्रैग छिपकली जब मकरंद भरे फूलों को चाटती है तो इस फूल के परागकण उसके मुंह पर चिपक जाते हैं। कैमरों के फुटेज देखने पर पता लगा कि यह छिपकली ही इसकी परागणकर्ता है। पर यह पक्का करने के लिए जब इन छिपकलियों को पौधों से दूर रखा गया तो इन पौधों द्वारा बनाए जाने वाले फलों का प्रतिशत 95 प्रतिशत तक गिर गया। इस तरह यह तो पक्का हो गया कि यह एक प्राथमिक परागणकर्ता है।

शोध दल के सदस्यों के अनुसार यह तो पता था कि इस द्वीप की कुछ छिपकलियां फूलों पर जाती हैं और यह भी मालूम था कि जहां गुथरिया के फूल मिलते हैं वहां छिपकली बहुतायत में पाई जाती हैं। दोनों की पसंद ऊंचे चट्टानी आवास हैं। पर दोनों के सम्बंध पर विचार नहीं किया गया था। हिडन फ्लॉवर पौधे के फूल अन्य वैसे ही फूलों से मिलते-जुलते हैं जिन्हें चूहे और छछूंदर परागित करते हैं। हालांकि पिछले कुछ वर्षों से यह ज्ञात है कि कुछ छिपकलियां फूलों से पोषण प्राप्त करती हैं पर उन्हें कभी महत्वपूर्ण परागणकर्ता नहीं माना गया था। इस शोध से यह तो पता चल गया कि यह छिपकली इस फूल की परागणकर्ता है परंतु यह पता लगाना बाकी था कि ये छिपकलियां इन फूलों को ढूंढती कैसे हैं, वह भी रात के अंधेरे में। अधिकतर छिपकलियां निशाचर होती हैं। लगता है कि जैव विकास के दौरान उन्होंने कीटों की दावत को मकरंद के चटखारे से बदल लिया है। छिपकली अपने भोजन को केवल गंध के माध्यम से पता लगाती है। हिडन फ्लॉवर्स की गंध के रासायनिक विश्लेषण से पता चला कि इसके यौगिक वनस्पति जगत में अनूठे हैं। ऐसा लगता है कि यही रसायन छिपकलियों को अपनी ओर आकर्षित करते हैं।

अफ्रीकन महाद्वीप पर पहला और विश्व भर में यह दूसरा उदाहरण है जिसमें छिपकली प्राथमिक परागणकर्ता है। सरीसृपों से परागित होने वाला दुनिया का पहला खोजा गया पौधा ट्रोकेशिया ब्लैकबर्मियाना था। यह पौधा तीन मीटर ऊंचा होता है और इस पर लाल रंग के फूल खिलते हैं। यह एक नर गेको (छिपकली जैसा जीव) द्वारा परागित होता है, जिसका आवास केवड़े की झाड़ियां हैं। इस परागणकर्ता गेको में चिपकने वाले पंजे नहीं होते। अत: यह छिपकली की तरह दीवारों पर नहीं चल सकती। ये दिन में भी सक्रिय रहती हैं, इनमें बाहरी कान भी नहीं होते।

नारंगी रंग का जादू 

अध्ययन करने पर पता चला कि गुथरिया के फूलों के आधार पर छोटी-छोटी नारंगी रंग की मकरंद ग्रंथियां होती है। आश्चर्य की बात यह है कि ये ग्रंथियां नर छिपकलियों में विकसित होने वाले नारंगी धब्बों से मेल खाती हैं जो मादा छिपकलियों को आकर्षित करने का काम करते हैं। और तो और, ट्रोकेशिया फूलों का रंग भी गेको के शरीर पर पाई जाने वाली नारंगी-लाल धारियों से मिलता-जुलता है। इससे यह लगता है कि छिपकलियों से परागित होने वाले फूल उन संकेतों से मेल बैठा रहे हैं जिन्हें ये परागणकर्ता पहले से ही इस्तेमाल करते आए हैं। दोनों की यह समानता दर्शाती है कि ये फूल उस रंग का इस्तेमाल करते हैं जिससे ये सरिसृप फूलों में छिपे मकरंद का पता लगा सकें। ट्रोकेशिया और गुथरिया की ये समानता यहीं समाप्त नहीं होती। दोनों के फूल घंटी नुमा है और इनका मकरंद भी पीला-नारंगी रंग का है। यानी नारंगी रंग एक महत्वपूर्ण लक्षण है इस परागण तंत्र का। छिपकलियों के परागण में योगदान का यह अनूठा संयोजन छिपकलियों की पारिस्थितिकी और ऐसे असामान्य फूलों की कार्यप्रणाली, रूप-रंग के बीच सम्बंधों के अनुसंधान के नए द्वार खोलता है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://i.guim.co.uk/img/media/e429f7581b27f77d3b61903f491af1df8e4fba06/0_0_1086_743/master/1086.jpg?width=700&quality=85&auto=format&fit=max&s=e20658f8f51419103a655199c3838089

हयाबुसा-2 की कार्बन युक्त नमूनों के साथ वापसी

जापान एक बार फिर एक क्षुद्रग्रह के नमूने पृथ्वी पर लाने में सफल रहा है। इन नमूनों पर वैज्ञानिकों द्वारा पृथ्वी पर पानी और कार्बनिक अणुओं के प्राचीन वितरण के सुरागों की छानबीन की जाएगी। हयाबुसा-2 का कैप्सूल रयूगू क्षुद्रग्रह का लगभग 5.3 अरब किलोमीटर का फासला तय करके 6 दिसंबर को ऑस्ट्रेलिया के वूमेरा रेगिस्तान में पैराशूट से उतारा गया। इसके बाद एक हेलीकॉप्टर की मदद से कैप्सूल को सुरक्षित जापान ले जाया गया।  

गौरतलब है कि हयाबुसा-2 को जापान एयरोस्पेस एक्सप्लोरेशन एजेंसी (जाक्सा) द्वारा 2014 में प्रक्षेपित किया गया था। इसने 18 महीनों तक रयूगू का चक्कर लगते हुए दूर से अवलोकन किया। इस दौरान डैटा एकत्र करने के लिए क्षुद्रग्रह पर कई छोटे रोवर भी उतारे गए। इसके अलावा सतह और सतह के नीचे से नमूने एकत्रित करने के लिए दो बार यान क्षुद्रग्रह पर उतरा भी। इसका उद्देश्य 100 मिलीग्राम कार्बन युक्त मृदा और चट्टान के टुकड़े एकत्र करना था। नमूने की असल मात्रा तो टोक्यो स्थित क्लीन रूम में कैप्सूल को खोलने के बाद ही पता चलेगी।           

इसके पहले 2010 में हयाबुसा मिशन के तहत ही इटोकावा क्षुद्रग्रह से सामग्री पृथ्वी पर लाई गई थी। क्षुद्रग्रहों में दिलचस्पी का कारण उनमें उपस्थित वह पदार्थ है जो 4.6 अरब वर्ष पूर्व सौर मंडल के निर्माण के समय से मौजूद है। ग्रहों पर होने वाली प्रक्रियाओं के विपरीत यह सामग्री दबाव एवं गर्मी के प्रभाव से परिवर्तित नहीं हुई है और अपने मूल रूप में मौजूद है।

वास्तव में रयूगू एक कार्बनमय या सी-प्रकार का क्षुद्रग्रह है जिसमें कार्बनिक पदार्थ और हाइड्रेट्स मौजूद हैं। इन दोनों में रासायनिक रूप से बंधा हुआ पानी काफी मात्रा में होता है। वैज्ञानिकों के अनुसार जब इस तरह के क्षुद्रग्रह अरबों वर्ष पहले नवनिर्मित पृथ्वी से टकराए होंगे तब इन मूलभूत सामग्रियों से जीवन की शुरुआत हुई होगी। वैसे दूर से किए गए अवलोकनों से संकेत मिल चुके हैं यहां पानी युक्त खनिज और कार्बनिक पदार्थ मौजूद है।

रयूगू पर पानी की मात्रा के आधार पर पता लगाया जा सकेगा कि अरबों वर्ष पहले पृथ्वी पर क्षुद्रग्रहों से कितना पानी आया है। नासा के अवलोकनों के अनुसार बेनू क्षुद्रग्रह पर रयूगू से अधिक मात्रा में पानी है।  

बहुत कम वैज्ञानिक क्षुद्रग्रहों के ज़रिए पृथ्वी पर जीवन के आगमन के विचार के समर्थक हैं। अलबत्ता, रयूगू जैसे क्षुद्रग्रहों से उत्पन्न कार्बन युक्त उल्कापिंडों से अमीनो अम्ल और यहां तक कि आरएनए भी उत्पन्न होने के संकेत मिले हैं। तो हो सकता है कि प्राचीन पृथ्वी पर जीवन की उत्पत्ति जैविक-पूर्व रासायनिक क्रियाओं के कारण हुई हो। अत: रयूगू से प्राप्त सामग्री के विश्लेषण में कई अन्य वैज्ञानिक रुचि ले रहे हैं।  

पृथ्वी के गुरुत्वाकर्षण में कैप्सूल को छोड़ने के बाद हयाबुसा-2 एक बार फिर 1998 केवाय-26 क्षुद्रग्रह के मिशन पर रवाना हो गया है। यान के शेष र्इंधन के आधार पर जाक्सा को उम्मीद है कि हयाबुसा अपने नए मिशन में भी सफल रहेगा। इसी बीच नासा के ओसिरिस-रेक्स मिशन के तहत सितंबर 2023 में बेनू क्षुद्रग्रह से नमूने प्राप्त होने हैं। नासा और जाक्सा अपने-अपने मिशनों से प्राप्त नमूनों की अदला-बदली पर भी सहमत हुए हैं। इकोटावा नमूनों सहित तीनों नमूनों की तुलना करने पर सौर मंडल के निर्माण सम्बंधी काफी जानकारियां प्राप्त हो सकती हैं।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/article_main_image_-1280w__no_aspect/public/hayabusa_1280p.jpg?itok=50kUWjQu

स्पर्श अनुभूति में एक प्रोटीन की भूमिका

म छूकर कई बारीक अंतर कर पाते हैं। जैसे एक सरीखे दिखने वाले कपड़ों की क्वालिटी में फर्क। और हालिया अध्ययन बताता है कि ऐसा हम अपनी उंगलियों के सिरों में पाए जाने वाले अशरिन नामक प्रोटीन की बदौलत कर पाते हैं। सामान्यत: अशरिन प्रोटीन हमें देखने और सुनने में मदद करता है। और अब पता चला है कि यह स्पर्श में भी सहायक हैं। इससे लगता है कि हमारी प्रमुख इंद्रियों के बीच एक गहरा आणविक सम्बंध है।

देखा गया है कि अशरिन प्रोटीन को कूटबद्ध करने वाले जीन, USH2A, में उत्परिवर्तन हो जाए तो अशर सिंड्रोम होता है। अशर सिंड्रोम एक बिरली आनुवंशिक बीमारी है जिसमें अंधापन, बहरापन और उंगलियों में हल्का कंपन्न भी महसूस ना कर पाने की समस्या होती है। इसलिए वैज्ञानिकों को इस बारे में अंदाज़ा तो था कि स्पर्श के एहसास के लिए अशरिन प्रोटीन महत्वपूर्ण है।

मैक्स डेलब्रुक सेंटर फॉर मॉलीक्यूलर मेडिसिन के तंत्रिका वैज्ञानिक गैरी लेविन और उनकी टीम ने स्पर्श में अशरिन की भूमिका को विस्तार से समझने के लिए अशर सिंड्रोम से पीड़ित 13 ऐसे मरीज़ों का अध्ययन किया जिनमें विशेष रूप से स्पर्श अनुभूति प्रभावित थी। इन मरीज़ों में उन्होंने तापमान में अंतर कर पाने, दर्द, और 10 हर्ट्ज़ व 125 हर्ट्ज़ के कंपन को महसूस करने की क्षमता जांची। यह कंपन लगभग वैसा ही उद्दीपन है जो उंगली को किसी खुरदरी सतह पर फिराते वक्त मिलता है। इन परिणामों की तुलना उन्होंने 65 स्वस्थ लोगों के परिणामों से की।

टीम ने पाया कि तापमान और हल्के दर्द के प्रति तो दोनों समूहों के लोगों ने एक जैसी प्रतिक्रिया दी। लेकिन अशर सिंड्रोम से पीड़ित लोगों ने 125 हर्ट्ज़ का कंपन स्वस्थ लोगों के मुकाबले चार गुना कम महसूस किया और 10 हर्ट्ज़ का कंपन डेढ़ गुना कम महसूस किया।

इसका कारण जानने के लिए शोधकर्ताओं ने यही प्रयोग चूहों पर दोहराया। नेचर न्यूरोसाइंस में शोधकर्ता बताते हैं कि मनुष्यों की तरह दोनों समूहों के चूहे, USH2A जीन वाले और USH2A जीन रहित चूहे, तापमान परिवर्तन और दर्द का एहसास तो ठीक से कर पा रहे थे। लेकिन जीन-रहित चूहों की तुलना में जीन-सहित चूहे कंपन की संवेदना के मामले में बेहतर थे।

सामान्यत: अशरिन प्रोटीन देखने और सुनने के लिए ज़िम्मेदार तंत्रिका कोशिकाओं में पाया जाता है। लेकिन पाया गया कि चूहों और मनुष्यों में यह माइस्नर कॉर्पसकल में भी मौजूद होता है। माइस्नर कॉर्पसकल सूक्ष्म और अंडाकार कैप्सूल जैसी रचना है जो उंगलियों की तंत्रिका कोशिकाओं को चारों ओर से घेरकर उन्हेंे सुरक्षित रखती है व सहारा देती है। यह खोज एक मायने में बहुत महत्वपूर्ण है। आम तौर पर माना जाता है कि तंत्रिकाएं अकेले ही संदेशों को प्रेषित करती हैं। लेकिन माइस्नर कार्पसकल में पाए जाने वाले प्रोटीन की संदेश-प्रेषण में भूमिका दर्शाती है कि तंत्रिका के बाहर उपस्थित अणु भी संदेशों के प्रेषण में कुछ भूमिका निभाते हैं।

शोधकर्ता आगे यह जानना चाहते हैं कि ठीक किस तरह USH2A प्रोटीन कंपन का एहसास करने में मदद करता है। जीन और प्रोटीन दोनों पर गहन अध्ययन कर यह बेहतर समझा जा सकता है कि हमारी पकड़ बनाने की क्षमता कैसे बढ़ाई और नियंत्रित की जा सकती है।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/article_main_image_-1280w__no_aspect/public/touch_1280p.jpg?itok=kGKJRje5

आपके पैरों तले है विशाल जैव विविधता

क्या आपने कभी सोचा है कि आपके पैरों तले एक विशाल जैविक तंत्र है? क्या आप जानते हैं कि मुट्ठी भर मिट्टी में लगभग 5,000 तरह के जीव बसते हैं और इसमें कुल कोशिकाओं की संख्या पृथ्वी की कुल आबादी के बराबर हो सकती है? साधारण मृदा में सूक्ष्म कवक, सड़ते-गलते पौधे, कवक को खाने वाले नन्हे कृमि और उन कृमियों का भक्षण करने की फिराक में सुई की नोक के बराबर घुन हो सकती है। और साथ में कोई ऐसा बैक्टीरिया भी हो सकता है जो अन्य बैक्टीरिया को अपने शक्तिशाली एंटीबायोटिक से खत्म कर सकता है। कुल मिलाकर, यह जैव विविधता का का विशाल मगर उपेक्षित संसार है।

लेकिन इस वर्ष विश्व मृदा दिवस (5 दिसंबर) पर संयुक्त राष्ट्र के खाद्य एवं कृषि संगठन ने इस भूमिगत दुनिया में उपस्थित जैव विविधता का पहला वैश्विक मूल्यांकन जारी किया है। इस मूल्यांकन में 300 विशेषज्ञों ने इन जीवों की विविधता, प्राकृतिक और कृषि परिवेश में इनके योगदान और इन पर मंडराते संभावित खतरों को साझा करने के लिए जानकारियां और डैटा एकत्र किया है। इस रिपोर्ट में फसल की पैदावार में वृद्धि तथा मिट्टी व पानी को स्वच्छ रखने में इन जीवों के योगदान की चर्चा भी की गई है। स्पैनिश नेशनल रिसर्च काउंसिल के मृदा एवं पादप पारिस्थितिकीविद फ्रांसिस्को पुग्नायर के अनुसार पौधों की जड़ें और भूमिगत जीव भूमि के ऊपर पाए जाने वाले जीवों से ज़्यादा कार्बन का संचय करते हैं और अधिक लंबे समय के लिए। 

देखा जाए तो मृदा कार्बनिक पदार्थों, खनिजों, गैसों और अन्य घटकों का मिश्रण होती है जो पौधों के विकास में मदद करता है। इतना ही नहीं, लगभग 40 प्रतिशत जंतु अपने जीवन चक्र में भोजन, आश्रय या फिर शरण लेने के लिए मृदा का उपयोग करते हैं। लेकिन धरती पर एक बुलडोज़र या ट्रैक्टर चलने, जंगल की आग, तेल के फैलने, यहां तक कि पैदल यात्रियों के निरंतर आवागमन से मृदा के पारिस्थितिकी तंत्र को क्षति पहुंचती है। उम्मीद है कि यह रिपोर्ट वैज्ञानिकों, नीति निर्माताओं और आम जनता को इस भूमिगत पारिस्थितिकी तंत्र के प्रति जागरूक करेगी।               

पूर्व के अध्ययनों में वैज्ञानिक मृदा के सबसे बड़े और सबसे छोटे जीवों पर ध्यान केंद्रित करते रहे हैं। कई सदियों से प्राकृतिक इतिहासकारों ने चींटियों, दीमकों, और यहां तक कि केंचुओं तथा मृदा से उनके सम्बंध पर चर्चा की है। पिछले कुछ दशकों में सूक्ष्मजीव विज्ञानियों ने तो मृदा के डीएनए का अनुक्रमण करके बैक्टीरिया और कवक की एक आश्चर्यजनक विविधता का भी पता लगाया है। लेकिन बड़े और छोटे जीवों के बीच हज़ारों जीवों को अनदेखा किया जाता रहा है। सूक्ष्म प्रोटिस्ट, कृमि और टार्डिग्रेड्स मृदा के कणों के आसपास पानी की बारीक झिल्ली का निर्माण करते हैं। कुछ बड़े और छोटे कृमि, स्प्रिंगटेल्स और कीट लार्वा, इन कणों के बीच हवादार छिद्रों में रहते हैं जो मृदा को जैविक रूप से इस पृथ्वी का सबसे विविध आवास बनाने में मदद करते हैं।   

यह विविधता एक समृद्ध और जटिल पारिस्थितिकी तंत्र का निर्माण करती है जो फसल की वृद्धि को बढ़ावा देती है, प्रदूषकों को विघटित करती है और कार्बन के अनंत सोख्ते के रूप में काम कर सकती है। मृदा के कुछ जीव पौधों की विविधता को बढ़ावा देते हैं और कई तो एंटीबायोटिक दवाओं से लेकर प्राकृतिक कीटनाशकों तक महत्वपूर्ण यौगिक उत्पन्न करते हैं। मृदा, जीवों और उनकी गतिविधियों के बिना अन्य जीवों का जीवित रहना असंभव होगा।

इस रिपोर्ट में कई मानव गतिविधियों की चर्चा की गई है जो मृदा के जीवों को नुकसान पहुंचाती हैं। इनमें वनों की कटाई, सघन कृषि, प्रदूषकों के कारण अम्लीकरण, अनुचित सिंचाई के कारण लवणीकरण, मृदा संघनन, सतह का बंद होना, आग तथा कटाव को शामिल किया गया है। इस सम्बंध में कुछ सरकारों और कंपनियों ने भी कार्य किया है। कई राष्ट्र ऐसे कानून बनाने पर विचार कर रहे हैं जिनसे मृदा को विनाशकारी मानव गतिविधियों से बचाया जा सके। चीन में एग्रीकल्चर ग्रीन डेवलपमेंट कार्यक्रम के तहत विभिन्न फसलों को एक साथ उगाया जा रहा है ताकि जैव विविधता को संरक्षित किया जा सके। उम्मीद है कि यह रिपोर्ट मृदा-जीव संरक्षण के प्रति जागरूकता बढ़ाएगी और संरक्षण को प्रोत्साहित करेगी।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/article_main_image_-1280w__no_aspect/public/ca_1211NID_Bugs_Soil_online_new.jpg?itok=1eKhpTd4

सर्पदंश से अनमोल जीवन की क्षति

हाल ही में जारी की गई एक रिपोर्ट के अनुसार हर वर्ष भारत में सर्पदंश से लगभग 30 लाख वर्षों के स्वास्थ्य और उत्पादकता के बराबर नुकसान होता है। इस अध्ययन में विशेष रूप से उन लोगों पर चर्चा की गई है जो सर्पदंश के बाद जीवित रहते हैं लेकिन अंग-विच्छेदन, गुर्दों की बीमारी जैसी स्थितियों से जूझ रहे हैं। गौरतलब है कि भारत में पहली बार इस तरह का विश्लेषण किया गया है। इसे युनिवर्सिटी ऑफ वाशिंगटन इंस्टिट्यूट ऑफ हेल्थ मैट्रिक्स एंड इवैल्यूएशन (IHMI) के निक रॉबर्ट्स ने अमेरिकन सोसाइटी ऑफ ट्रॉपिकल मेडिसिन एंड हाइजीन द्वारा नवंबर में आयोजित वर्चुअल बैठक में प्रस्तुत किया। 

विश्व स्वास्थ्य संगठन (WHO) ने 2017 में सर्पदंश के कारण विषाक्तता को एक उपेक्षित उष्णकटिबंधीय बीमारी घोषित किया है। इसके लिए संगठन ने पिछले वर्ष एक वैश्विक पहल की शुरुआत की है जिसमें वर्ष 2030 तक सर्पदंश से होने वाली मौतों और विकलांगता को आधा करने का लक्ष्य है। टोरंटो स्थित सेंटर फॉर ग्लोबल हेल्थ रिसर्च के निदेशक प्रभात झा और उनके सहयोगियों ने सर्पदंश से होने वाली मौतों का सटीक अनुमान लगाने का प्रयास किया है। अपनी रिपोर्ट में झा ने बताया है कि भारत में प्रति वर्ष लगभग 46,000 मौतें सर्पदंश से होती हैं। इस रिपोर्ट के बाद WHO ने भी अपने अनुमान को संशोधित करके कहा है कि प्रति वर्ष विश्व भर में सर्पदंश से 81,000 से 1,38,000 मौतें होती हैं। ऐसे में भारत को निवारण पर विशेष ध्यान देने की आवश्यकता है। 

सर्पदंश के अधिकांश मामले  अस्पतालों या स्वास्थ्य केंद्रों तक पहुंच के अभाव में औपचारिक रूप से दर्ज नहीं हो पाते और ऐसे में इसके प्रभाव को कम आंका जाता है। देखा जाए तो इस तरह के मामले अधिकतर गरीब किसानों और उनके परिवारों में होते हैं। इसलिए इन पर अधिक ध्यान भी नहीं दिया जाता है।

भारत में सर्पदंश की अधिकता का एक कारण यहां मौजूद सांपों की 300 से अधिक प्रजातियां हैं जिनमें से 60 प्रजातियां अत्यधिक विषैली हैं। इसके अलावा दूरदराज़ क्षेत्रों में निकटतम स्वास्थ्य केंद्र से दूरी के कारण भी समय पर पहुंचना काफी मुश्किल हो जाता है। क्लीनिकों में एंटी-वेनम दवाओं का अभाव या उनके रखरखाव में लापरवाही भी एक बड़ा कारण है। 

फिर भी क्ष्क्तग्क के विश्लेषण से सर्पदंश के उपरांत जीवित रहे लोगों में होने वाले दीर्धकालिक प्रभावों की पहली मात्रात्मक जानकारी प्राप्त हुई है। ऐसे विश्लेषणों से स्वास्थ्य व्यवस्था की लागत और अन्य सामाजिक दबावों की जानकारी मिल सकती है।

इन अध्ययनों से यह बात तो साफ है कि नीति स्तर पर बुनियादी स्वास्थ्य सुविधाओं तक आसान पहुंच की तत्काल आवश्यकता है। सरकार को ग्रामीण क्षेत्रों पर विशेष ध्यान देते हुए सभी राज्यों में सर्पदंश के उपचार की उपलब्धता बढ़ाने की आवश्यकता है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://media.nature.com/w400/magazine-assets/d41586-020-03327-9/d41586-020-03327-9_18614746.jpg

कोविड-19: क्लस्टर-बस्टिंग तकनीक की सीमा

जापान में कोरोनावायरस के बढ़ते मामलों के बीच विशेषज्ञों ने राष्ट्रव्यापी स्तर पर संक्रमण की रोकथाम के लिए क्लस्टर-बस्टिंग तकनीक अपनाई थी। अब लग रहा है कि शायद उस तरीके की सीमा आ चुकी है। जापानी स्वास्थ्य मंत्रालय की सलाहकार समिति के अनुसार इस तकनीक की मदद से अब महामारी को नियंत्रित नहीं रखा जा सकता है। यानी अब कोरोनावायरस के संक्रमण को रोकने के लिए कोई अन्य शक्तिशाली कदम उठाना होगा।

गौरतलब है कि जापान में जन-स्वास्थ्य केंद्रों के माध्यम से क्लस्टर-बस्टिंग (प्रसार के स्थानों को चिंहित करना) तकनीक को अपनाया गया था। इसमें संक्रमण के मूल स्रोत का पता लगाने के लिए उलटी दिशा में कांटेक्ट ट्रेसिंग की जाती है। यह तकनीक जापान में वायरस के प्रसार को रोकने में अब तक काफी प्रभावी रही है। लेकिन विशेषज्ञों के अनुसार तीसरी लहर में परिस्थिति बदल चुकी है। अब क्लस्टर काफी फैल गए हैं और विविधता भी काफी अधिक है।

देखा जाए तो गर्मी के मौसम में दूसरी लहर के दौरान रात के मनोरंजन स्थलों पर सबसे अधिक क्लस्टर पाए गए थे। लेकिन अब ये क्लस्टर चिकित्सा संस्थानों, कार्यस्थलों और विदेशी बस्तियों सहित कई स्थानों पर पाए जा रहे हैं। ऐसे में स्वास्थ्य-कर्मियों की कमी के कारण जन-स्वास्थ्य केंद्रों में वृद्ध लोगों की देखभाल को प्राथमिकता दी जा रही है। फिर भी जन-स्वास्थ्य केंद्रों का बोझ कम करने के लिहाज़ से विशेषज्ञों की मानें तो यह तकनीक अपनी अंतिम सीमा तक पहुंच चुकी है। वर्तमान स्थिति में राष्ट्र स्तर पर पांच दिनों तक रोज़ाना 2000 से अधिक मामले इस तकनीक की सीमा को उजागर करते हैं।

सलाहकार समिति के एक सदस्य के अनुसार क्लस्टर-बस्टिंग तकनीक का उपयोग केवल तब संभव है जब किसी क्षेत्र में संक्रमण व्यापक रूप से न फैला हो। लेकिन एक खास बात यह भी है कि ऐसे स्थानों को नियंत्रित करना भी मुश्किल होता है जहां आधे से अधिक मामलों में संक्रमण का मार्ग अज्ञात हो। ऐसे हालात में समिति का सुझाव है कि लंबी दूरी की यात्रा पर प्रतिबंध के साथ-साथ सरकार को महामारी नियंत्रित करने के लिए अन्य सख्त कदम उठाने चाहिए।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://cdn.japantimes.2xx.jp/wp-content/uploads/2020/11/np_file_52749.jpeg

नासा का मिशन मंगल – प्रदीप

दुनिया राजनैतिक, सामाजिक और पर्यावरणीय दृष्टि से उथल-पुथल के दौर में है। ऐसी परिस्थिति में महान वैज्ञानिक स्टीफन हॉकिंग यह कहकर धरती से रुखसत हो चुके हैं कि महज़ 200 वर्षों के भीतर मानव जाति का अस्तित्व हमेशा के लिए खत्म हो सकता है और इस संकट का एक ही समाधान है कि हम अंतरिक्ष में कॉलोनियां बसाएं।

हाल के वर्षों में हुए अनुसंधानों से पता चलता है कि भविष्य में पृथ्वीवासियों द्वारा रिहायशी कॉलोनी बनाने के लिए सबसे उपयुक्त स्थान हमारा पड़ोसी ग्रह मंगल है। मंगल ग्रह और पृथ्वी में अनेक समानताएं हैं। हालांकि मंगल एक शुष्क और ठंडा ग्रह है, लेकिन वहां पानी, कार्बन डाईऑक्साइड, नाइट्रोजन आदि मौजूद हैं जो इसे जीवन के अनुकूल बनाते हैं। मंगल अनोखे रूप से सर्वाधिक उपयोगी और उपयुक्त ग्रह है। मंगल अपनी धुरी पर एक चक्कर लगाने में लगभग पृथ्वी के बराबर समय लेता है। मंगल पर पृथ्वी के समान ऋतुचक्र होता है। पृथ्वी की तरह मंगल पर भी वायुमंडल मौजूद है, हालांकि बहुत विरल है।

हाल ही में अमेरिकी अंतरिक्ष एजेंसी नासा ने एक रिव्यू रिपोर्ट के ज़रिए यह घोषणा की है कि वह युरोपियन स्पेस एजेंसी ईसा के साथ मिलकर ‘मार्स सैम्पल रिटर्न मिशन’ के तहत मंगल ग्रह की सतह के नमूने पृथ्वी पर लाएगा। इसकी बड़ी वजह यह है कि अगर हमें मंगल ग्रह के बारे में अच्छे से जानना है, तो हमें उसकी सतह के नमूनों का बारीकी से अध्ययन करना होगा। इसी से हम यह जान सकेंगे कि मंगल ग्रह की सतह में किस प्रकार के कार्बनिक अणु मौजूद हैं, और क्या वहां किसी तरह की फसल उगाई जा सकती है।

नमूने इकट्ठा करके धरती पर लाने के लिए रोवर, लैंडर और ऑर्बाइटर का निर्माण काफी पहले ही शुरू हो चुका है। इसके लिए मंगल पर कुछ खास प्रयोग और अन्वेषण करने के लिए ‘परसेवियरेंस रोवर’ रवाना हो चुका है और जो फरवरी में मंगल पर पहुंचेगा।

परसेवियरेंस का मंगल पर सबसे महत्वपूर्ण प्रयोग है ऑक्सीजन का उत्पादन। इसके लिए रोवर के साथ मार्स ऑक्सीजन इनसीटू रिसोर्स युटिलाइजेशन एक्सपेरिमेंट (मॉक्सी) भेजा है। मॉक्सी मंगल की कार्बन डाईऑक्साइड को ऑक्सीजन में बदलने का काम करेगा, जो भविष्य के मंगल यात्रियों के लिए स्वच्छ जीवनदायक हवा मुहैया कराएगी।

परसेवियरेंस अलग-अलग स्थानों से मंगल ग्रह की सतह में मौजूद मिट्टी और चट्टानों के नमूने इकट्ठा करेगा। दूसरे चरण में ईसा का ‘एक्सोमार्स रोवर’ परसेवियरेंस रोवर द्वारा इकट्ठा किए गए सैंपल कैपस्यूल्स को अलग-अलग स्थानों से उठाकर एक जगह पर इकट्ठा करेगा। तीसरे चरण में एक्सोमार्स रोवर इन कैपस्यूल्स को ‘मार्स सैंपल रिट्रीवल लैंडर’ तक ले जाएगा। मार्स सैंपल रिट्रीवल लैंडर अपने विशेष सॉलिड रॉकेट की सहायता से इन कैपस्यूल्स को मंगल ग्रह की कक्षा में तकरीबन 350 कि.मी. की ऊंचाई तक भेजेगा। चौथे चरण में ईसा का ‘अर्थ रिटर्न ऑर्बाइटर’ इन सैंपल कैपस्यूल्स को एक विशेष कंटेनर में इकट्ठा करेगा और अपने सोलर इलेक्ट्रिक आयन इंजन के ज़रिए धरती तक लाएगा। नासा के प्रशासक जिम ब्रिडेनस्टीन के मुताबिक अगर सब कुछ ठीक-ठाक रहा तो 2030 तक यह विशेष कंटेनर, सैंपल कैपस्यूल्स के साथ धरती पर उतर सकता है और करीब 500 ग्राम सैंपल हमें अध्ययन के लिए मिल जाएगा!(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.nasa.gov/sites/default/files/thumbnails/image/journey_to_mars.jpeg

आनुवंशिक विरासत को बदल देता है एपिजेनेटिक्स – डॉ. डी. बालसुब्रमण्यन

हाल ही में नेचर पत्रिका में एक रोमांचक पेपर प्रकाशित हुआ है: जेनेटिक रिप्रोग्रामिंग के द्वारा युवावस्था की एपिजेनेटिक जानकारी को बहाल करके दृष्टि लौटाना। पेपर के लेखक युआंगचेंग लू और उनके साथी बताते हैं कि बुढ़ापे का एक कारण ‘एपिजेनेटिक परिवर्तनों’ का जमा होना है जो जीन की अभिव्यक्ति को अस्त-व्यस्त कर देता है, जिससे जीन्स की अभिव्यक्ति का पैटर्न बदल जाता है और डीएनए का मूल काम प्रभावित होता है। यदि विशिष्ट जीन्स का उपयोग करके उन जीन्स को वापिस कार्यक्षम बना दिया जाए (यानी जीन थेरेपी की जाए) तो (चूहों में) दृष्टि क्षमता को बहाल किया जा सकता है।

मनुष्य (और अन्य स्तनधारी जीवों) की आंखें जैव विकास में बना एक महत्वपूर्ण अंग है। इनकी मदद से हम बाहरी दुनिया को रंगीन रूप में स्पष्ट देख पाते हैं। जैव विकास के शुरुआती जीव, जैसे सूक्ष्मजीव और पौधे, प्रकाश के प्रति अलग-अलग तरीकों से प्रतिक्रिया देते हैं, जैसे प्रकाश सोखना और उपयोग करना (मसलन प्रकाश संश्लेषण में)। मानव आंख का अग्र भाग (कॉर्निया, लेंस और विट्रियस ह्यूमर) पारदर्शी और रंगहीन होता है, यह रेटिना पर पड़ने वाले प्रकाश को एक जगह केंद्रित करने में मदद करता है जिससे हमें विभिन्न रंग दिखाई देते हैं। रेटिना ही मस्तिष्क को संदेश भेजने का कार्य करता है। रेटिना का मुख्य भाग, रेटिनल गैंग्लियॉन सेल्स (आरजीसी) जिन्हें न्यूरॉन्स या तंत्रिका कोशिकाएं कहा जाता है, विद्युत संकेतों के रूप में संदेश भेजने में मदद करती हैं। यानी आरजीसी प्रकाश को विद्युत संकेतों में परिवर्तित करती हैं।

कोशिकीय नियंत्रक

हमारे शरीर की कोशिकाओं और ऊतकों के कामकाज हज़ारों प्रोटीन द्वारा नियंत्रित किए जाते हैं। ये प्रोटीन सम्बंधित जीन्स के रूप में कूदबद्ध होते हैं। ये जीन्स हमारे जीनोम या कोशिकीय डीएनए का हिस्सा होते हैं। वंशानुगत डीएनए में यदि छोटा-बड़ा किसी भी तरह का बदलाव (जुड़ना या उत्परिवर्तन) होता है तो प्रोटीन के विकृत रूप का निर्माण होने लगता है। परिणामस्वरूप कोशिका का कार्य गड़बड़ा जाता है। यही मनुष्यों में कई वंशानुगत विकारों का आधार है।

डीएनए या प्रोटीन स्तर के अनुक्रम में परिवर्तनों के अलावा कुछ अन्य जैव रासायनिक परिवर्तन भी होते हैं जो इस बात को प्रभावित करते हैं और तय करते हैं कि किसी कोशिका में कोई जीन सक्रिय होना चाहिए या निष्क्रिय रहना चाहिए। उदाहरण के लिए, इंसुलिन (एक प्रोटीन) बनाने वाला जीन शरीर की प्रत्येक कोशिका में मौजूद होता है, लेकिन यह सिर्फ अग्न्याशय की इंसुलिन स्रावित करने वाली बीटा कोशिकाओं में व्यक्त किया जाता है जबकि शरीर की बाकी कोशिकाओं में इसे निष्क्रिय रखा जाता है। इस प्रक्रिया को नियंत्रक प्रोटीनों के संयोजन द्वारा सख्ती से नियंत्रित किया जाता है। ये नियंत्रक प्रोटीन जीन की अभिव्यक्ति को बदलते हैं। इसके अलावा, हिस्टोन प्रोटीन होते हैं जो डीएनए को बांधते हैं और गुणसूत्रों के अंदर सघन रूप में संजोकर रखने में मदद करते हैं। इन हिस्टोन प्रोटीन्स में भी रासायनिक परिवर्तन हो सकते हैं। जैसे प्रोटीन के विभिन्न लाइसिन अमीनो एसिड पर मिथाइलेशन और एसिटाइलेशन। डीएनए और इससे जुड़े प्रोटीन दोनों पर हुए परिवर्तन गुणसूत्र की जमावट को बदल देते हैं और जीन अभिव्यक्ति को नियंत्रित करते हैं। ये परिवर्तन या तो डीएनए को खोल कर जीन अभिव्यक्ति की अनुमति देते हैं या डीएनए को घनीभूत करके उस स्थान पर उपस्थित जीन को निष्क्रिय या खामोश कर देते हैं।

इस तरह के जैव रासायनिक परिवर्तन, जो किसी कोशिका विशेष में किसी जीन की अभिव्यक्ति निर्धारित करते हैं, को ‘एपिजेनेटिक्स’ कहा जाता है। डीएनए उत्परिवर्तन तो स्थायी होते हैं। उनके विपरीत एपिजेनेटिक परिवर्तन पलटे जा सकते हैं। इनके कामकाज का संचालन कई नियंत्रक प्रोटीन्स द्वारा किया जाता है, जैसे डीएनए मिथाइल ट्रांसफरेज़ (डीएनएमटी), हिस्टोन एसिटाइल ट्रांसफरेज़ (एचएटीएस), हिस्टोन डीएसिटाइलेज़ (एचडीएसी)। ये नियंत्रक प्रोटीन ऐसे परिवर्तनों को जोड़ सकते हैं या हटा सकते हैं, जिनसे किसी अंग या ऊतक के किसी खास जीन को खास तरह से चालू या बंद किया जा सकता है। अग्न्याशय की बीटा कोशिकाओं में इंसुलिन जीन को खुला या सक्रिय रखा जाता है जो प्रोटीन को अभिव्यक्त होने देता है, जबकि अन्य कोशिकाओं में यह जीन निष्किय रहता है। बुढ़ापे, तनाव या किसी बीमारी के चलते हमारे जीन्स का सामान्य एपिजेनेटिक नियंत्रण प्रभावित हो सकता है।

हम यह तो अच्छी तरह जानते हैं कि कई तरह के कैंसर में कोशिका विभाजन को नियंत्रित करने वाले कुछ जीन (ट्यूमर शामक जीन्स) या तो उत्परिवर्तन के कारण या एपिजेनेटिक परिवर्तनों के कारण निष्क्रिय हो जाते हैं, नतीजतन अनियंत्रित कोशिका विभाजन होने लगता है और ट्यूमर बन जाता है। इसी तरह, उम्र बढ़ने की सामान्य प्रक्रिया के साथ होने वाले एपिजेनेटिक परिवर्तनों से कई संदेश या नौजवान जीन्स भी निष्क्रिय हो जाते हैं।

आरजीसी कोशिकाओं के कारण हम स्पष्ट और रंगों को देख पाने में सक्षम हैं। बुढ़ापे के कारण आरजीसी की काम करने की क्षमता धीरे-धीरे कम होने लगती है। इसके अलावा, बाह्र कारक जैसे कि वंशानुगत इतिहास, मधुमेह (टाइप 1 और टाइप 2 दोनों) और अन्य कारक उपरोक्त एपिजेनेटिक परिवर्तनों द्वारा सामान्य स्थिति को बदल देते हैं।

उपरोक्त शोधपत्र पर मैंने अपने साथियों, इंदुमति मरियप्पन (कोशिका जीव विज्ञान में ट्रांसलेशनल शोधकर्ता) और जी. चंद्रशेखर (ग्लकामो में विशेष रुचि रखने वाले नैदानिक विशेषज्ञ) की प्रतिक्रिया जानना चाही। डॉ. मरियप्पन बताती हैं कि मनुष्यों में इस तरह के प्रयोग पर विचार करना जोखिम भरा हो सकता है क्योंकि हरेक कोशिका में इतने सारे अज्ञात और अनिश्चित प्रभाव हो सकते हैं जिससे ऐसा कुछ अप्रत्याशित घट सकता है जिसे वापस ठीक नहीं किया जा सकेगा और डीएनए स्थायी रूप से परिवर्तित हो जाएगा। लेकिन वे कहती हैं कि मोतियाबिंद के अध्ययन के लिए इस तरह के प्रयोग जंतु मॉडल, जैसे माइस, चूहे और ज़ेब्राफिश पर किए जा सकते हैं। डॉ. चंद्रशेखर कहते हैं कि वास्तविक कसौटी तो यह होगी कि क्या अन्य प्रयोगशालाओं में इस तरह के परीक्षण बुढ़ापे के कारण प्रभावित अन्य अंगों जैसे हृदय, फेफड़ों और गुर्दों पर सफलतापूर्वक करके देखे जा सकते हैं।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Epigenetic_mechanisms.jpg/1024px-Epigenetic_mechanisms.jpg