क्यों गायब हुए मनुष्य के शरीर के बाल? -डॉ. अरविंद गुप्ते

ब डार्विन ने जैव विकास का सिद्धांत प्रकाशित किया था, तब दुनिया में तहलका मच गया था। सिद्धांत का आशय यह था कि जैव विकास ऐसी प्रक्रिया है जिसमें नई प्रजातियां बनती रहती हैं और पुरानी प्रजातियां नष्ट होती जाती हैं। इस सिद्धांत का एक निष्कर्ष यह भी था कि मनुष्य का विकास बंदरों के समान जंतुओं से हुआ है। विज्ञान ने इस सिद्धांत की पुष्टि निर्विवाद रूप से कर दी है।

यह बात आज भी कई लोगों के गले नहीं उतरती। वे सोचते हैं कि हमारे आसपास पाया जाने वाला कोई बंदर मनुष्य कैसे बन सकता है। किंतु ऐसा नहीं होता, आज का कोई बंदर मनुष्य नहीं बन सकता। इस प्रक्रिया में लाखों-करोड़ों वर्ष लग जाते हैं। सबसे सटीक उदाहरण डायनासौर का है जो मगरमच्छों और छिपकलियों के सम्बंधी थे और 25 करोड़ से लेकर 6 करोड़ वर्ष पूर्व तक पृथ्वी पर उनकी बादशाहत थी। कुछ मांसाहारी डायनासौर बहुत खूंखार और विशालकाय थे। किंतु कालांतर में सभी डायनासौर नष्ट हो गए और जैव विकास की प्रक्रिया में कुछ डायनासौर से पक्षी विकसित हो गए। बंदर से मनुष्य बनना कुछ ऐसा ही है जैसा डायनासौर से पक्षियों का बनना।

आज से 70 लाख वर्ष पहले अफ्रीका में रहने वाले कपि सहेलोन्थ्रोपस से दो अलग-अलग जंतुओं, चिम्पैंज़ी और आदिम मानव, का विकास हुआ (चिम्पैंज़ी, गोरिल्ला, ओरांगउटान जैसे पूंछ-रहित बड़े बंदरों को कपि और अंग्रेजी में ऐप कहते हैं)। पेड़ों पर रहने वाला यह आदिम मानव आज के मनुष्य से इतना अलग था कि उसे ऑस्ट्रेलोपिथेकस नाम दिया गया है।

अन्य कपियों के समान ही आदिम मानव के शरीर पर भी घने बालों का आवरण था। जैव विकास के दौरान मनुष्य के शरीर के बाल गायब हो गए। लेकिन ऐसा क्यों हुआ? मानव की हड्डियों के जीवाश्मों का अध्ययन करके वैज्ञानिक यह तो पता लगा सकते हैं कि मनुष्य की शरीर रचना में कब-कब और कैसे-कैसे परिवर्तन हुए। किंतु चूंकि मृत्यु के कुछ समय बाद त्चचा नष्ट हो जाती है, उससे सम्बंधित कोई भी अध्ययन लगभग असंभव होता है। फिर भी, जंतुओं और वनस्पतियों के जीवाश्मों का अध्ययन करके वैज्ञानिक इस निष्कर्ष पर पहुंचे कि मनुष्य के शरीर से बालों के गायब होने का प्रमुख कारण जलवायु परिवर्तन है।

यह ध्यान में रखना आवश्यक है कि जीवधारियों में जो भी परिवर्तन होते हैं वे लाखों वर्षों की अवधि में होते हैं। इस प्रक्रिया में कई नमूने बनते हैं किंतु जीवित रहने योग्य नहीं पाए जाने पर वे नष्ट हो जाते हैं। जो नमूने सफल होते हैं वे बच जाते हैं और उनमें और अधिक परिवर्तन होते जाते हैं। इस प्रकार नई-नई प्रजातियां बनती रहती हैं।

मनुष्य का उद्भव तथा प्रारंभिक जैव विकास अफ्रीका में हुआ और उसके अधिकांश शारीरिक परिवर्तन उस महाद्वीप की परिस्थितियों से जुड़े हैं। आज से लगभग 30 लाख वर्ष पहले पूरे विश्व में एक ज़बरदस्त शीत लहर आई थी जिससे संसार के सारे जीवधारी प्रभावित हुए थे। आदिमानव के निवास स्थान – मध्य और पूर्वी अफ्रीका – में वर्षा में कमी के कारण जंगल नष्ट हो गए और उनका स्थान घास के खुले मैदानों ने ले लिया। इन जंगलों में रहने वाले ऑस्ट्रेलोपिथेकस नामक आदिमानव के प्रमुख आहार फल, पत्तियों, जड़ों और बीजों की उपलब्धता कम हो गई। इसी प्रकार, जल के स्थायी स्रोत सूख जाने के कारण पीने के पानी की भी कमी हो गई। परिणामस्वरूप, मनुष्य को भोजन और पानी की खोज में अधिक दूर तक जाना पड़ता था। भोजन के वनस्पति स्रोतों की कमी के चलते मनुष्य ने लगभग 26 लाख वर्ष पहले अन्य जंतुओं का शिकार कर उन्हें खाना शुरू कर दिया। शिकार की खोज में अधिक लंबी दूरियां तय करने और उनका पीछा करने के लिए अधिक तेज़ भागने के लिए अधिक ऊर्जा खर्च करना ज़रूरी हो गया। प्राकृतिक वरण के फलस्वरूप पेड़ों पर रहने वाले मानव की तुलना में ज़मीन पर रहने वाले मानव के हाथों और टांगों की लंबाई बढ़ गई।

अधिक तेज़ गतिविधि करने के कारण शरीर के तापमान के बढ़ने का खतरा पैदा हो गया। शरीर के बढ़े हुए तापमान को कम करने में दो बातों से फायदा मिला – शरीर से बालों का आवरण कम होना और त्वचा में स्थित पसीने का निर्माण करने वाली स्वेद ग्रंथियों की संख्या में वृद्धि।

त्वचा से बालों का आवरण हट जाने के कारण शुरूआती दौर में मनुष्य की त्वचा अन्य कपियों की त्वचा के समान हल्के गुलाबी रंग की थी। किंतु सूर्य के प्रकाश में मौजूद पराबैंगनी किरणें इस अनावृत त्वचा के लिए घातक सिद्ध होने लगीं। शरीर के लिए अत्यावश्यक विटामिन फोलेट पराबैंगनी किरणों से नष्ट हो जाता है, इसके अलावा त्वचा के कैंसर का भारी खतरा होता है। एक बार फिर प्रकृति ने अपना चमत्कार दिखाया और लगभग 12 लाख वर्ष पहले मनुष्य में एक ऐसे जीन MC1R का उद्भव हुआ जो त्वचा में मेलानिन नामक काले रंग के पदार्थ के बनने के लिए उत्तरदायी होता है। पराबैंगनी किरणों से बचने के लिए मेलानिन एक प्रभावशाली साधन है। यही कारण है कि उष्णकटिबंधीय क्षेत्रों और तेज़ धूप वाले समशीतोष्ण क्षेत्रों में मनुष्य की त्वचा में मेलानिन अधिक मात्रा में पाया जाता है।

जब मनुष्य ने अफ्रीका से निकल कर युरोप जैसे ठंडे प्रदेशों में रहना शुरू किया तब वहां धूप की तीव्रता कम होने के कारण पराबैंगनी किरणों का खतरा तो कम हो गया किंतु एक नया खतरा सामने आया। वह खतरा यह था कि धूप तेज़ न होने के कारण शरीर में विटामिन-डी बनना बंद हो गया। विटामिन-डी हड्डियों की मजबूती के लिए आवश्यक होता है। अत: इन क्षेत्रों में रहने वाले मनुष्य की त्वचा में मेलानिन की मात्रा कम हो गई और उनकी त्वचा श्वेत होती गई।

शरीर का तापक्रम कम करने का अन्य प्रभावशाली उपाय पसीना बहाना है। कपि समूह में (जिसका सदस्य मनुष्य भी है) स्वेद ग्रंथियां पाई जाती हैं। किंतु मनुष्य में इनकी संख्या बहुत अधिक बढ़ गई है और वे त्वचा के ठीक नीचे स्थित हो गई हैं। किसी बहुत गरम दिन पर तेज़ गतिविधि करने पर एक मनुष्य के शरीर से 12 लीटर तक पसीना निकल सकता है। पसीने और बाल-रहित त्वचा का यह गठजोड़ शरीर को ठंडा करने के लिए इतना प्रभावशाली होता है कि वैज्ञानिकों के एक अनुमान के अनुसार किसी बहुत गरम दिन पर लंबी दौड़ में एक स्वस्थ मनुष्य घोड़े को भी पीछे छोड़ सकता है।

मनुष्य और चिम्पैंज़ी के डीएनए में 99 प्रतिशत समानता होती है किंतु उनमें एक महत्वपूर्ण अंतर यह होता है कि मनुष्य में ऐसे जीन पाए जाते हैं जो उसकी त्वचा को जल और खरोचों के प्रति रोधक बनाते हैं। बालरहित त्वचा के लिए यह गुणधर्म ज़रूरी है। ये जीन चिम्पैंज़ी में नहीं पाए जाते।

इस सबके बावजूद यह सवाल रह जाता है कि मनुष्य के सिर और बगलों तथा जांघों के जोड़ों पर बाल क्यों रह गए। सिर के बालों के कार्य के बारे में वैज्ञानिकों का कहना है कि अफ्रीका में रहने वाले पूर्वज मनुष्य के बाल घने और घुंघराले थे (जैसे आज भी अफ्रीकी मूल के लोगों के होते हैं)। ऐसे बालों के कारण सिर की त्वचा और बालों के बीच एक रिक्त स्थान बन जाता है जिसमें हवा की एक परत होती है। तेज़ धूप में बाल ऊष्मा को सोख लेते हैं और सिर की त्वचा से निकलने वाले पसीने की भाप हवा की परत में चली जाती है और सिर का तापक्रम कम हो जाता है। बगलों तथा जांघों के जोड़ों पर स्थित बालों के बारे में वैज्ञानिकों की राय है कि वे चलने या दौड़ने के दौरान इन जोड़ों में घर्षण को कम रखते हैं।

बालों का एक उपयोग स्तनधारी आक्रामकता को प्रदर्शित करने के लिए भी करते हैं। सबसे परिचित उदाहरण कुत्तों और बिल्लियों में देखा जाता है जो खतरे से सामना होने पर अपने बालों को खड़ा कर लेते हैं। मनुष्य के पास अब यह सुविधा नहीं है, किंतु उसने कई अन्य तरीकों से अपनी भावनाओं को व्यक्त करना सीख लिया है, जैसे चेहरे तथा शरीर के हावभावों से या बोल कर या लिख कर। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://upload.wikimedia.org/wikipedia/en/b/bd/Sahelanthropus_tchadensis_reconstruction.jpg

सूर्य की स्थिति देखकर करती है प्रवास यह तितली

त्तरी अमेरिका में पाई जाने वाली मोनार्क तितलियां (Danaus plexippus) हर साल बड़ी संख्या में उड़कर मेक्सिको में जाड़े का मौसम बिताने के लिए पहुंचती हैं। इस यात्रा में ये लगभग 3000 किलोमीटर की दूरी तय करती हैं। प्रवास के लिए इतनी लंबी दूरी तय करने वाले ये एकमात्र कीट हैं। इन तितलियों की यह प्रवास यात्रा वैज्ञानिकों के लिए लंबे समय से एक गुत्थी रही है कि आखिर कौन-से कारक इन तितलियों को प्रवास के लिए उकसाते हैं। गुत्थी अब सुलझती नज़र आ रही है। फ्रंटियर्स इन इकॉलॉजी एंड एंवायरमेंट में प्रकाशित शोध पत्र के मुताबिक मध्यान्ह के समय क्षितिज से सूरज का कोण मोनार्क तितलियों को प्रवास के लिए प्रेरित करता है।

हालांकि पूर्व में हुए अध्ययन में यह तो बता चुके थे कि मोनार्क तितलियों के एंटीना में मौजूद जैविक घड़ी सूर्य की क्षैतिज स्थिति के मुताबिक इन्हें दिशा सम्बंधी ज्ञान कराती है लेकिन यह अज्ञात था कि इस यात्रा के लिए इन्हें प्रेरित कौन करता है और वे अपनी दैनिक यात्रा कैसे तय करती हैं।

इसे विस्तार से समझने के लिए एक गैर-मुनाफा संस्था मोनार्क वॉच ने 1992 में एक कार्यक्रम शुरू किया था। इसके तहत हज़ारों वॉलंटियर्स को नाखून की साइज़ के गुलाबी रंग के चिपकू टैग वितरित किए गए थे। इन वालंटियर्स ने अपने इलाके से गुज़रने वाली मोनार्क तितलियों पर ये टैग चिपकाए और टैग चिपकाने का स्थान और तारीख नोट की। 1998 से 2005 के बीच 13 लाख से अधिक मोनार्क तितलियों पर टैग चिपकाए गए। प्रवास में जब तितलियां दक्षिण-पश्चिम मेक्सिको में अपनी मंज़िल पर पहुंचने लगीं, वहां मौजूद वालंटियर्स ने इन पर लगे टैग जांचे। उन्हें लगभग 13,000 तितलियों पर टैग चिपके मिले।

इसके बाद कार्यक्रम के संस्थापक ओर्ले टेलर और उनके साथियों ने प्रत्येक तितली पर टैग लगाने के स्थान पर मध्यान्ह सूर्य के क्षितिज से बनने वाले कोण की गणना की। वे यह मानकर चले कि जब तितलियों पर टैग लगाया गया तब वे प्रवास शुरू कर रही थीं। आंकड़ों के आधार पर उन्होंने पाया कि अधिकांश तितलियां ने अपनी प्रवास यात्रा तब शुरू की जब मध्यान्ह का सूरज क्षितिज से 57 अंश के कोण पर था। कुल मिलाकर मोनार्क अपनी प्रवास यात्रा तब शुरू करती हैं जब यह कोण 48 से 57 अंश के बीच होता है।

इसके अलावा यह भी लगता है कि मोनार्क तितली अपनी आगे की यात्रा भी सूरज के क्षितिज से बनने वाले कोण के मुताबिक पूरी करती हैं। तितलियों पर टैग लगाने के स्थान और तारीख के आंकड़ों के विश्लेषण में टीम ने पाया कि दक्षिण की ओर प्रवास यात्रा की शुरुआत में तितलियों की गति 17 किलोमीटर प्रतिदिन होती है जो मध्य प्रवास में बढ़कर 47 किलोमीटर प्रतिदिन तक हो जाती है। उसके बाद और दक्षिण में पहुंचकर गति घटकर 17 किलोमीटर प्रतिदिन हो जाती है। उनकी गति का यह पैटर्न उत्तर से दक्षिण की ओर सूर्य के बदलते कोण से मेल खाता है।

तितलियों की यात्रा की यह गति एक अन्य अध्ययन के निष्कर्ष से मेल खाती है। यह अध्ययन प्रवास यात्रा के दौरान पेड़ों पर तितलियों द्वारा डाले गए पड़ावों पर किया गया था, जहां ये प्रवासी तितलियां रात्रि विश्राम करती हैं।

इस तरीके से संरक्षणवादियों को यह जानने में मदद मिल सकती  है कि जलवायु परिवर्तन जैसे बाहरी कारक इन तितलियों की इस प्रवास यात्रा को कैसे प्रभावित करेंगे। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/inline__450w__no_aspect/public/Monarch_Migration_Tagging_1280x720.jpg?itok=L6K_VTK9

चंद्रमा पर हज़ारों टार्डिग्रेड्स हैं

टार्डिग्रेड्स, जिनको जलीय-भालू के नाम से भी जाना जाता है, पृथ्वी के सबसे कठोर और लचीले जीव हैं। आठ टांगों वाले ये सूक्ष्मजीव किसी भी वातावरण में (चाहे अंतरिक्ष ही क्यों न हो) जीवित रहने में सक्षम हैं। ऐसी ही एक घटना आज से कुछ महीने पहले एक इस्राइली अंतरिक्ष यान की चांद पर दुर्घटनाग्रस्त लैंडिंग के दौरान हुई।  

जब टार्डिग्रेड्स को इस्राइली चंद्र मिशन बारेशीट पर लादा गया था तब वे निर्जलित अवस्था में थे और उनकी सभी चयापचय गतिविधियां अस्थायी रूप से मंद पड़ी थीं। लेकिन चंद्रमा पर इनका आगमन काफी विस्फोटक रहा। 11 अप्रैल के दिन चंद्रमा पर बारेशीट की क्रैश लैंडिंग ने चांद की सतह पर इन सूक्ष्मजीवों को बिखेर दिया होगा।

वैसे तो यह जीव काफी सख्तजान है लेकिन पता नहीं इनमें से कितने इस टक्कर में बच पाए होंगे। फिर भी, निश्चित रूप से उनमें से कुछ के जीवित रहने की संभावना तो है। दुनिया भर की अंतरिक्ष एजेंसियां चांद पर वस्तुएं छोड़ने की अनुमति के लिए 1967 की बाह्र अंतरिक्ष संधि का पालन करती हैं। यह संधि स्पष्ट रूप से मात्र हथियारों, प्रयोगों और ऐसे उपकरणों को चांद पर छोड़ने का निषेध करती है जो अन्य एजेंसियों के मिशन में दखल दे सकती हैं।      

इस संधि के बाद कई अन्य दिशानिर्देश भी जारी किए गए हैं जिनमें पृथ्वी से ले जाए गए सूक्ष्मजीवों और बीजों के जोखिम स्वीकार किया गया है। लाइव साइंस के अनुसार विश्व स्तर पर इसे लागू करने वाली कोई संस्था नहीं है, फिर भी बड़ी अंतरिक्ष एजेंसियां आम तौर पर इन नियमों का पालन करती आई हैं।  

अभी तक चांद पर जीवन के कोई संकेत तो नहीं मिले हैं जिनको टार्डिग्रेड्स से खतरा हो। लेकिन अन्य ग्रहों पर जीवन मिलने की संभावना को निरस्त नहीं किया जा सकता और पृथ्वी के सूक्ष्मजीव इन मूल निवासी सूक्ष्मजीवों को नष्ट कर सकते हैं। विशेषज्ञों का मानना है कि मंगल पर जीवन बसाने से पृथ्वी के सूक्ष्मजीवों द्वारा मंगल के सूक्ष्मजीवों को नुकसान हो सकता है।

देखा जाए तो टार्डिग्रेड ऐसी स्थितियों में खुद को जीवित रख सकते हैं जिन स्थितियों में अन्य सूक्ष्मजीव खत्म हो जाते हैं। वे अपने शरीर से पानी को बाहर निकालकर कुछ ऐसे यौगिक उत्पन्न करते हैं जो उनको सुरक्षित रखते हैं। ये जीव कई महीनों तक इस हालत में रह सकते हैं और पानी मिलने पर वापिस जीवित हो जाते हैं। प्रयोगशाला में 30 वर्ष पुराने 2 टार्डिग्रेड को पुनर्जीवित किया जा चुका है।   

युरोपीय अंतरिक्ष एजेंसी ने 2008 में टार्डिग्रेड को पृथ्वी की कक्षा में भेजने पर पाया था कि एक टार्डिग्रेड उबलते हुए और ठंडे पानी, उच्च दबाव और यहां तक कि अंतरिक्ष के वैक्यूम में भी जीवित रहा। अलबत्ता, टार्डिग्रेड्स पर पराबैंगनी विकिरण का काफी प्रभाव हुआ था और थोड़े से ही बच पाए थे। यानी टार्डिग्रेड्स के जीवित रहने की संभावना है यदि वे चांद पर ऐसे स्थान पर हों जहां पराबैंगनी विकिरण न हो।  

लेकिन जब तक चंद्रमा पर टार्डिग्रेड हैं तब तक बिना पानी के उनके पुन: जीवित होने की संभावना कम ही है। और यदि कहीं से उन्हें चांद पर पानी मिल भी जाता है तब भी बिना भोजन, हवा और सही तापमान के जीवित रहना संभव नहीं होगा। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcR4eamJtrUUzFZ157D-qnz4W1fEseCnrftp9oLQW-zNrkBmveQg

डायनासौर को भी जूं होती थी

म में से कई लोगों का पाला सिर में होने वाली जूं से पड़ा होगा, खासकर बचपन में। सिर से जूं निकालना और उनका पूरी तरह सफाया करना ज़रा मुश्किल काम है। हो भी क्यों ना, जूं फुर्ती से बालों में छिपने में माहिर जो है। अब, हाल ही में नेचर कम्युनिकेशन में प्रकाशित अध्ययन बताता है कि पृथ्वी पर जूं का अस्तित्व पिछले 10 करोड़ वर्षों से है और उस वक्त उनके मेज़बान पंखों वाले डायनासौर हुआ करते थे।

दरअसल, वर्तमान जूं के जेनेटिक विश्लेषण से तो पता चल गया था कि उनका अस्तित्व पृथ्वी पर पंखों वाले डायनासौर के समय से है, लेकिन उनके जीवाश्म अब तक नहीं मिले थे। क्योंकि एक तो जूं सरीखे छोटे जीवों के अश्मीभूत होने की संभावना बहुत कम होती है, और यदि हो भी गए तो उन्हें खोज निकालना मुश्किल होता है। इस संदर्भ में युनिवर्सिटी ऑफ नेवेडा की वैकासिक जीव विज्ञानी जूली एलन का कहना है कि इतना पुराना और वह भी पंखों पर जूं का जीवाश्म मिलना बहुत ही सनसनीखेज बात है।

कीटों, खासकर जूं जैसे परजीवी के जीवाश्म को ढूंढने में बीजिंग की केपिटल नॉर्मल युनिवर्सिटी के जीवाश्म विज्ञानी ताइपिंग गाओ, दोंग रेन, चुंगकुंग शिह ने काफी वक्त लगाया। और आखिरकार म्यांमार में मिले दो छोटे जीवाश्मों में उन्हें 10 कीट दिखाई दिए, जो नर्म पंखों के भीतर सुरक्षित थे। इन पंखों को देखकर लग रहा था कि उन्हें कुतरा गया था।

कीटों के ये जीवाश्म मात्र 0.2 मिलीमीटर लंबे थे और आजकल की जूं जैसे नहीं दिख रहे थे। उनका मुंह वर्तमान जूं जितना परिष्कृत नहीं था और उनके नाखूनों और एंटीना पर सख्त और लंबे रोम थे। इस परजीवी जूं को शोधकर्ताओं ने नाम दिया है मेसोफ्थिरस एंजेली अर्थात मेसोज़ोइक युग की जूं। इसका नामकरण कीट विज्ञानी माइकल एंजेल के नाम पर किया गया है।

आधुनिक जूं की तरह इन जूं के पंख नहीं थे और आंखें, एंटीना और पैर भी छोटे-छोटे थे। इससे लगता है कि वे बहुत तेज़ और लंबा नहीं चलते होंगे। अलबत्ता, सारे लक्षण जूं के समान हैं। चूंकि प्राप्त जीवाश्म बहुत ही छोटे हैं इसलिए शोधकर्ताओं का अनुमान है कि वे अवयस्क जूं हैं और वयस्क जूं लगभग आधा मिलीमीटर लंबे रहे होंगे।

अधिकतर वर्तमान जूं किसी एक खास प्रजाति या शरीर के किसी खास अंग पर बसेरा करते हैं जैसे हमारे सिर की जूं। इसके अलावा जूं कई अन्य जानवरों और पक्षियों पर भी डेरा जमाती हैं। मनुष्य के सिर की जूं खून पीती है लेकिन पक्षियों या जानवरों पर पाई जाने वाली जूं या तो पंख खाती है या त्वचा। उपरोक्त दोनों जीवाश्मों में जो पंख हैं वे काफी अलग-अलग प्रकार के हैं और दो भिन्न डायनासौर के लगते हैं; इससे लगता है कि एम. एंजेली जूं का कोई एक खास मेज़बान नहीं था। पंखों पर क्षति के निशान देखकर लगता है कि ये इन जूं द्वारा खाए गए होंगे।

चूंकि ऐसा लगता है कि यह जूं पंख खाती है इसलिए वे अपने मेज़बान को काटती नहीं होगी, और डायनासौर को खुजली तो नहीं होती होगी। लेकिन जिस तरह से जूं ने पंखों को नुकसान पहुंचाया है उसे देखकर लगता है कि डायनासौर अपने पंखों को साफ करते रहे होंगे, जैसे आजकल के पक्षी जूं से छुटकारा पाने के लिए करते हैं। तो पंखदार डायनासौर के न सिर्फ पंख थे बल्कि आजकल के पक्षियों के समान जूं उन्हें तंग भी करती थी। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://images.ctfassets.net/cnu0m8re1exe/27zzboQ6337fh6LMh27Vgl/480d88b09a3cace9699d0e1c0e58b237/Dinosaur_Lice_2.jpeg?w=650&h=433&fit=fill

पक्षी के भोजन की चुगली करते हैं पंख

प्रवासी बोबोलिंक पक्षियों के स्वास्थ्य को, उनके प्रजनन स्थल से दूर किसी अन्य स्थल के बाहरी कारक काफी प्रभावित करते हैं। लेकिन मुश्किल यह है कि सर्दियों के मौसम में अपने प्रवास के दौरान जब ये पक्षी दक्षिण अमेरिका में फैल जाते हैं तब इन्हें कौन-कौन से कारक प्रभावित करते हैं, इस पर निगरानी रखना मुश्किल होता है। इस संदर्भ में हाल ही में कॉन्डोर: ऑर्निथोलॉजिकल एप्लीकेशंस में प्रकाशित अध्ययन में शोधकर्ताओं ने प्रवास के दौरान पक्षियों पर नज़र रखने के एक नए तरीके के बारे में बताया है। शोधकर्ताओं ने बोबोलिंक नामक विलुप्तप्राय प्रवासी पक्षी के प्रवास के दौरान उनके आहार के बारे में पता लगाने के लिए उनके पंखों में कार्बन यौगिकों का विश्लेषण किया। इन यौगिकों का संघटन इस बात से निर्धारित होता है कि पक्षी ने किस तरह की वनस्पति को अपना भोजन बनाया है।

बोबोलिंक पक्षी के शीतकालीन प्रवास स्थल – दक्षिण अमेरिका – में पाई जाने वाली अधिकतर घासों और धान में कार्बन समस्थानिकों का अनुपात अलग-अलग होता है। वरमॉन्ट सेन्टर फॉर इकोस्टडी की रोसलिंड रेन्फ्रू और उनके साथियों ने पौधों की इसी विशेषता का फायदा उठाया। इसके लिए उन्होंने दक्षिणी अमेरिका के चावल उत्पादन स्थल, घास के मैदान और उत्तरी अमेरिका के प्रजनन स्थल से बोबोलिंक पक्षियों के पंख के नमूने एकत्रित किए।

पंखों में कार्बन समस्थानिकों के अनुपात का पता लगाने पर पता चला कि दक्षिण अमेरिका के धान और गैर-धान वाले इलाकों में बोबोलिंक के आहार में फर्क स्पष्ट झलकता था। उत्तरी अमेरिका से लिए गए पंखों के नमूनों में दिखा कि सर्दियों के दौरान अधिकतर पक्षियों के भोजन में चावल शामिल नहीं था लेकिन ठंड के मौसम के अंत में, जब धान पककर तैयार होता था और उत्तर की ओर वापसी का समय था, तब उनके भोजन में काफी चावल था।

अनुमान है कि उत्तर की ओर वापसी यात्रा करने के लिए चावल इन पक्षियों को अधिक ऊर्जा देता होगा। लेकिन एक संभावना यह भी है कि इस भोजन से वे फसलों पर छिड़के जाने वाले कीटनाशकों के अधिक संपर्क में आएंगे और उन्हें किसानों से खतरा बढ़ जाएगा, जो उन्हें फसल को नुकसान पहुंचाने वाले पक्षियों की तरह देखते हैं। शोधकर्ताओं के मुताबिक विलुप्तप्राय बोबोलिंक के संरक्षण के लिए ज़रूरी है कि उनको पोषण देने वाले घास के मैदानों का संरक्षण किया जाए, हानिकारक कीटनाशकों का उपयोग कम करने के लिए एकीकृत कीट प्रबंधन को बढ़ावा दिया जाए और इन पक्षियों द्वारा खाई गई फसल के लिए किसानों को मुआवज़ा दिया जाए। (स्रोत फीचर्स)
नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.allaboutbirds.org/guide/assets/photo/67379741-1280px.jpg

ज़हर खाकर मोनार्क तितली कैसे ज़िंदा रहती है? – डॉ. विपुल कीर्ति शर्मा

मेक्सिको और कैलिफोर्निया के आसपास मिल्कवीड पौधों की दो दर्जन प्रजातियां मिलती हैं जिन्हें पशु खाना पसंद नहीं करेंगे, चाहे भूखे मर जाएं। इन पौधों से निकलने वाले दूध में कार्डिनोलाइड्स नामक बेहद कड़वे एवं विषाक्त स्टेरॉइड पाए जाते हैं जिन्हें खाने से ह्रदय गति अनियंत्रित हो जाती है तथा उल्टियां होने लगती हैं।

हर वर्ष बेहद लंबे प्रवास के दौरान मोनार्क तितलियां इन्हीं मिल्कवीड पौधों पर अंडे देती हैं। अंडों से निकली पेटू इल्लियां (कैटरपिलर्स) पत्तियों के साथ विषाक्त दूध का भी सेवन करते हैं परंतु उनका कुछ नहीं बिगड़ता। ये कैटरपिलर्स विष को शरीर में एकत्रित करते रहते हैं। जब वे तितली में परिवर्तित हो जाते हैं तो यही विष तितली के शरीर में आ जाता है। तो सवाल उठता है कि आखिर कैटरपिलर्स और मोनार्क तितली इस अत्यंत प्रभावी विष को क्यों एकत्रित करके शरीर में रखती है और वे खुद इस विष के दुष्प्रभाव से कैसे बची रहती हैं?

प्रकृति में तितलियों और कैटरपिलर्स के कई शिकारी पाए जाते हैं जो मौका मिलते ही उन्हें खा सकते हैं। विष को शरीर में एकत्रित करके रखने से शिकारी इन तितलियाों और उनकी इल्लियों को खाने से बचते हैं। शिकारियों से बचने का यह महत्वपूर्ण तरीका है।

कार्डिनोलाइड्स का काम

कार्डिनोलाइड्स मुख्य रूप से एस्क्लिपिएडेसी और एपोसायनेसी कुल के पौधों में पाए जाते है। पौधों में यह ज़हर पशुओं द्वारा खाए जाने से बचाव करता है। यह विष जंतु कोशिका की कोशिका झिल्ली में पाए जाने वाले महत्वपूर्ण प्रोटीन सोडियम-पोटेशियम पंप को प्रभावित करता है। कोशिकाओं में सोडियम तथा पोटेशियम आयन का स्तर निश्चित रहता है। सोडियम-पोटेशियम पंप इन आयनों की सांद्रता को बनाए रखने में मदद करते हैं। आयन की सामान्य सांद्रता से ही पेशियां तथा तंत्रिकाएं ठीक तरीके से कार्य कर पाती है। मिल्कवीड का विष सीधे सोडियम-पोटेशियम पंप से बंधकर सामान्य कामकाज में बाधा उत्पन्न करता है। विष के प्रभाव से ह्रदय की गति तेज़ होती जाती है और अंत में ह्रदय कार्य करना बंद कर देता है।

हाल ही में नेचर पत्रिका में प्रकाशित शोध पत्र में वैज्ञानिकों ने बताया है कि किस प्रकार मोनार्क में विष से बचने के लिए अनुकूलन हुआ। वैज्ञानिकों ने पाया कि जहां अन्य प्राणियों में मिल्कवीड का ज़हर सोडियम-पोटेशियम पंप से बंधकर उसके कार्य को रोकता है, मोनार्क तितलियों में जीन म्यूटेशन के कारण विष को बांधने वाला ग्राही खत्म हो चुका है। इसलिए विष के घातक प्रभाव उत्पन्न ही नहीं होते। वैज्ञानिकों ने आनुवंशिक परिवर्तन के ज़रिए एक ऐसी फल-मक्खी बनाई जो मोनार्क के समान ही मिल्कवीड पौधों के विष से अप्रभावित रही। इन जीन परिवर्तित मक्खियों को मिल्कवीड पौधों के दूध पर पाला गया तो वे विष के प्रभाव से महफूज़ रहीं।

वैज्ञानिकों को कुछ समय पहले से ही यह ज्ञात हुआ है कि सोडियम-पोटेशियम पंप को बनाने वाले जीन में से एक में उत्परिवर्तन हो जाने से कुल छह गणों (ऑर्डर्स) के कीट मोनार्क के समान मिल्कवीड के पौधों को खाने की क्षमता रखते हैं। वैज्ञानिकों ने यह भी पता लगाया है कि विष और सोडियम-पोटेशियम पंप के जुड़ाव स्थान पर अगर केवल एक अमीनो अम्ल का भी परिवर्तन कर दिया जाए तो विष जंतु पर अप्रभावी रह जाता है। एक अमीनो अम्ल का बदलाव और इसी के समान कुछ अन्य परिवर्तनों के कारण कुछ कीट ज़हरीली मिल्कवीड को भोजन बना लेते हैं।

बर्कले स्थित कैलिफोर्निया विश्वविद्यालय के नोआ व्हाइटमैन और साथियों ने जीन संपादन की एक नई तकनीक का उपयोग करके ड्रॉसोफिला में मोनार्क के जैसे विष प्रतिरोधी जीन डाल दिए। आनुवंशिक रूप से परिवर्तन करने के प्रयोग के दौरान वैज्ञानिकों ने 720 ड्रॉसोफिला को परिवर्तित किया परंतु उनमें से केवल एक ही वयस्क अवस्था तक पहुंच पाई। घरों में या फलों की दुकानों के आसपास मिलने वाली ड्रॉसोफिला सड़ते हुए फलों पर पाई जाने वाली खमीर (यीस्ट) को खाती है। प्रयोगशाला में पालने के लिए इन्हें मक्का, जौं, खमीर तथा अगार के मिश्रण वाले सूप पर पाला जाता है। आनुवंशिक रूप से परिवर्तित विभिन्न ड्रॉसोफिला को वैज्ञानिकों ने मिल्कवीड की पत्तियों के सूखे चूर्ण या शुद्ध विष को पृथक करके बनाए सूप पर पाला। कुछ ड्रॉसोफिला में मोनार्क के समान सोडियम-पोटेशियम पंप में तीन उत्परिवर्तन थे तो कुछ में एक। तीन उत्परिवर्तन वाली ड्रॉसोफिला विष के प्रभाव से बची रहीं। वैज्ञानिकों का विचार है कि जैव विकास के दौरान मोनार्क के साथ भी ऐसा ही कुछ हुआ होगा। जीन परिवर्तन से न सिर्फ उनकी इल्लियां ऐसे पौधों पर पल पार्इं बल्कि विष जमा करने से तितली को शिकारियों से सुरक्षा भी मिली। (स्रोत फीचर्स)
नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://static.scientificamerican.com/sciam/cache/file/BCD1AE20-12A6-41D4-8D9FDE9D5C195D07_source.jpg?w=590&h=800&BD969032-FFA1-432E-87BAC9D348E4DF3A

मच्छर की आंखों से बनी कृत्रिम दृष्टि – एस. अनंतनारायणन

आंखें और दृष्टि, विकास और विशिष्टीकरण का ज़बर्दस्त चमत्कार हैं। अंधकार और प्रकाश के प्रति संवेदनशील कोशिकाएं लेंस द्वारा संकेंद्रित छवियां बनाने के लिए परिष्कृत की गर्इं। प्रकाश-संवेदी कोशिकाओं से मिलकर परदे बने। ये परदे और कुछ नहीं, बेजोड़ संवेदनशीलता और रंग भेद करने वाले ग्राहियों की जमावट हैं। उसके बाद आता है प्रोसेसिंग का कार्य ताकि इस तंत्र द्वारा एकत्रित सूचना से कुछ मतलब निकाला जा सके।   

जंतु एक कदम आगे बढ़े हैं और उनके पास दो आंखें होती हैं। इससे उनको गहराई की अनुभूति करने में मदद मिलती है। संधिपाद प्राणियों या बाह्र कंकाल वाले प्राणियों (आर्थोपोड्स) में इस विशेषता की इंतहा हो जाती है। उनमें एक जोड़ी संयुक्त आंखें होती हैं। या यों कहें कि जोड़ी की प्रत्येक आंख हज़ारों इकाइयों में विभाजित होती है जिससे दृश्य पटल काफी विस्तृत हो जाता है।

टेक्नॉलॉजी ने प्रकाश संवेदना का उपयोग कैमरे के रूप में किया है। कैमरे के लेंस और अधिक विशिष्ट हो गए हैं। और रेटिना का स्थान फोटो फिल्म के सूक्ष्म कणों या कैमरा स्क्रीन के पिक्सेल ने ले लिया है। संयुक्त नेत्र की नकल करते हुए, वैज्ञानिकों ने पोलीमर शीट्स पर लेंस का ताना-बाना विकसित किया है। इसे एक अर्धगोलाकार रूप दिया जा सकता है। ये लेंस सिलिकॉन फोटो-डिटेक्टर के एक ताने-बाने पर अलग-अलग छवियां छोड़ते हैं। 180 ऐसे सक्रिय लेंस वाले 2 से.मी. से भी छोटे एक उपकरण से और बढ़िया काम की उम्मीद जगी थी। लेकिन प्रकृति में मौजूद आंखों के नैनोमीटर स्तर के खंडों की नकल उतारना और ऐसे खंडों की पर्याप्त संख्या बनाकर एक बड़ी संयुक्त आंख तैयार करना पहुंच से बाहर साबित हुआ है।    

अमेरिकन केमिकल सोसाइटी के जर्नल एसीएस एप्लाइड मटेरियल्स एंड इंटरफेसेस में जॉन हॉपकिंस युनिवर्सिटी के डोंगली शिन, तियानज़ू हुआंग, डेनिस नीब्लूम, माइकल ए. बेवन और जोएल फ्रेशेट ने एक विधि का विवरण दिया है जिसकी मदद से इन बाधाओं से पार पाया जा सकता है। सूक्ष्म घटकों के स्तर पर काम करने की बजाय जोएल फ्रेशेट की टीम ने नैनोमीटर आकार की तेल की बूंदों का उपयोग लेंस के रूप में किया है। इनको तेल की एक और बूंद पर एक परत के रूप में जमा किया गया ताकि यह एक लचीली कृत्रिम संयुक्त आंख के रूप में काम कर सके।    

बाल्टिमोर के इस समूह ने मच्छर की आंख के मॉडल का उपयोग किया है। पेपर के अनुसार मच्छर की आंख के प्रकाशीय और सतह के गुणों ने टीम के लिए प्रेरणा स्रोत का काम किया। सूक्ष्म-लेंस के नैनो स्तर गुणधर्म एंटीफॉगिंग और एंटीरेफ्लेक्टिव गुण प्रदान करते हैं। लेंस की फोकस दूरी बहुत कम है, इसलिए सभी वस्तुएं फोकस में रहती हैं। सूक्ष्म लेंसों की गोलार्ध में जमावट चारों ओर से छवियों को पकड़ती है। मस्तिष्क इन्हें एकीकृत करता है। इसकी मदद से आंख को बगैर हिलाए-डुलाए आंखों की परिधि पर स्थित वस्तुएं भी देखी जा सकती हैं।

इस छोटी संयुक्त आंख की विशेषता यह है कि इसकी इकाइयां कम विभेदन वाली और काफी किफायती होती हैं। यह मस्तिष्क को भोजन की तलाश या खतरे को भांपने में कुशल बनाता है, जबकि गंध जैसी अन्य इंद्रियां बारीकियों का ख्याल रखती हैं। एएससी की एक प्रेस विज्ञप्ति के अनुसार “संयुक्त आंख की सरलता और बहु-सक्षमता उन्हें दृष्टि की सूक्ष्म प्रणालियों के काबिल बनाती हैं जिसका उपयोग ड्रोन या रोबोट में किया जा सकता है।”  

पेपर के अनुसार इस संरचना की नकल करना काफी चुनौतीपूर्ण रहा है। पूरा ध्यान लचीले धरातल पर कृत्रिम लेंसों को जमाकर इस संरचना की नकल करने पर रहा है, किंतु वास्तविक आंख की सूक्ष्मस्तरीय विशेषताएं भी नदारद रहीं और कृत्रिम संयुक्त नेत्र में एक साथ कई लेंसों के निर्माण की विधि भी। वर्तमान कार्य में, टीम ने इस चुनौती को बूंद-रूपी नैनो कणों में निहित वक्रता से संभाला। यह एक ऐसी संरचना है जिसे तरल कंचा कहते हैं।  

तरल कंचा वास्तव में एक बूंद है जिस पर एक ऐसी सामग्री का लेप किया जाता है जो तरल पदार्थ को अन्य सामग्रियों से अलग रखता है। सामान्यत: पानी की गोलाकार बूंद कांच की शीट पर रखने पर फैल जाती है। अलबत्ता, कांच की शीट पर ग्रीस लगाकर इसे रोका जा सकता है। एक अन्य तरीका यह है कि बूंद पर ऐसी सामग्री का लेप किया जाए कि अंदर का तरल पदार्थ कांच के संपर्क में न आए। इस तरह से बूंद एक लचीली वस्तु होगी जो कंचे की तरह गोल बनी रहेगी। जब तेल और पानी को मिलाया जाता है तो तेल की बूंदें बन जाती हैं, लेकिन इन छोटी बूंदों को एकसार ढंग से पानी में फैलाया जा सकता है, जैसे पायस में होता है। लेकिन यदि इन बूंदों पर किसी पदार्थ का लेप करके उनको सीधे संपर्क में आने से न रोका जाए, तो ये छोटी-छोटी बूंदें आपस में जुड़कर बड़ी बूंदें बन जाएंगी।  

बाल्टिमोर टीम ने तेल की नैनो बूंदें बनाने के लिए केश-नलिका उपकरण का उपयोग किया और इन बूंदों को सिलिकॉन के नैनो कणों से लेप दिया। लेप की वजह से बूंदें जुड़ी नहीं बल्कि एक नियमित, तैरते पटिए के आकार की इकहरी परत के रूप में जम गर्इं। इस तरह से एक बड़ी बूंद पर छोटी-छोटी बूंदों की एक परत बन गई। परिणामस्वरूप एक नैनोमीटर आकार के गोले पर उसी सामग्री की छोटी-छोटी बूंदों वाला एक तरल कंचा तैयार हो गया। यह संरचना ठीक संयुक्त आंख की संरचना जैसी होती है।       

पेपर के अनुसार अंत में इस तरह बनी संरचना को संसाधित किया जाता है ताकि वह यांत्रिक दृष्टि से एक मज़बूत सामग्री के रूप में तैयार हो जाए। ठीक उसी तरह से जैसे एक संयुक्त आंख एक ही सामग्री के कई सारे लेंस से मिलकर बनी होती है।  

 यह प्रक्रिया निर्माण की पारंपरिक चुनौतियों से बचते हुए मच्छर की आंख के प्रकाशीय और एंटीफॉगिंग गुणों की नकल करती है। इस पेपर के अनुसार इस प्रक्रिया से तरल कंचा लेंस की आकृति में फेरबदल संभव हो जाता है। इसके चलते अन्य किस्म के लेंस भी बनाए जा सकेंगे। इस पेपर के अनुसार “इस प्रक्रिया का और विकास करके चिकित्सकीय इमेजिंग, टोही उपकरणों और रोबोटिक्स के क्षेत्र में लघुकरण को बढ़ावा मिलेगा।” (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQSLqYOa2OWE8Rc6eufu3Id16zKpR5ZHx-gZum2LvGFoT3cQa5t

एक मस्तिष्कहीन जीव के जटिल निर्णय

गभग एक सदी पहले अमेरिकी जीव विज्ञानी हर्बर्ट स्पेंसर जेनिंग्स ने तुरही के आकार के एक-कोशिकीय जीव स्टेंटर रोसेली पर एक प्रयोग किया था। इस प्रयोग में जेनिंग्स ने इस जीव के आसपास तकलीफदेह कार्मीन पाउडर डाला था। बिहेवियर ऑफ दी लोअर ऑर्गेनिज़्म्स नामक लेख में जेनिंग्स ने बताया था कि पावडर से बचने के लिए यह जीव पहले तो पाउडर के चारों ओर अपने शरीर को मोड़ने की कोशिश करेगा। यदि इससे काम न चले तो वह अपने सिलिया (सतह पर उपस्थित रोम) को उल्टा चलाकर पावडर के कणों को दूर करने की कोशिश करेगा। यदि फिर भी नाकाम रहता है तो वह खुद को सिकोड़ लेगा और यदि ये सारे तरीके काम नहीं करते, तो वह वहां से रुखसत हो जाएगा।  

बाद में इन निष्कर्षों को दोहराया नहीं जा सका और इन्हें खारिज कर दिया गया। लेकिन हाल ही में हार्वर्ड युनिवर्सिटी के शोधकर्ता जेरेमी गुणवर्दना और उनकी टीम ने इसे फिर से दोहराने का निर्णय लिया। शोधकर्ताओं ने स्टेंटर रोसेली के व्यवहार को सूक्ष्मदर्शी की मदद से देखकर रिकॉर्ड किया। 

उन्होंने सबसे पहले जंतु के आसपास कार्मीन पावडर डाला, लेकिन जंतु पर कोई असर नहीं हुआ। शोधकर्ता बताते हैं कि प्राकृतिक उत्पाद होने के चलते कार्मीन की संरचना जेनिंग्स के समय से काफी बदल चुकी है। लिहाज़ा उन्होंने कार्मीन की बजाय सूक्ष्म प्लास्टिक मोतियों का उपयोग किया। जैसा कि अनुमान था, स्टेंटर रोसेली ने प्लास्टिक मोतियों से बचने के लिए ठीक वैसा ही व्यवहार किया जैसा कि जेनिंग्स ने बताया था। सारे जंतुओं के व्यवहार किसी विशेष क्रम में तो नहीं थे लेकिन सांख्यिकीय विश्लेषण करने पर पता चला कि औसतन उनके निर्णय लेने की प्रक्रिया एक समान है। इस एक-कोशिकीय जीव ने तैरकर भाग निकलने से पहले खुद को मोड़ने, सिलिया की गति की दिशा को बदलकर कणों को हटाने और सिकुड़ने की क्रियाओं को चुना।

शोधकर्ताओं ने यह भी पाया कि यदि जीव खुद को सतह से अलग करने या सिकोड़ने के चरण तक पहुंचता है तब इनमें से किसी एक को चुनने की संभावना बराबर होती है। इस अध्ययन से पता चला कि स्टेंटर रोसेली के पास कोई मस्तिष्क तो नहीं है लेकिन फिर भी पहले वे आसान उपाय करते हैं, उसके बाद भी यदि आप उन्हें छेड़ते रहें तो वे कुछ और करने का निर्णय लेते हैं। यानी कोई व्यवस्था है जिसकी बदौलत उकसावा देर तक जारी रहने पर वे ‘मन बदल लेते हैं’।

ये निष्कर्ष कैंसर अनुसंधान में काफी सहायक हो सकते हैं। साथ ही अपनी कोशिकाओं को लेकर हमारी समझ में भी बदलाव ला सकते हैं। कोशिकाएं एक जटिल पारिस्थितिक तंत्र में जीती हैं और वे मात्र अपने जीन्स द्वारा निर्धारित ढंग से काम नहीं करतीं। गुणवर्दना के अनुसार एक-कोशिकीय जीव, जो एक समय में इस धरती पर राज करते थे, हमारी सोच से भी कहीं अधिक जटिल हो सकते हैं। यह निष्कर्ष 5 दिसंबर की करंट बायोलॉजी पत्रिका में प्रकाशित हुए हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://cdn.mos.cms.futurecdn.net/gb5cGi9DQDujRzqKim2Fi4-320-80.gif

करीबी प्रजातियों पर जलवायु परिवर्तन का उल्टा असर

मानव बसाहट से दूर होने के बावजूद अंटार्कटिका की पारिस्थितिकी और जीवन मानव गतिविधियों से प्रभावित रहा है। जैसे व्हेल और सील के अंधाधुंध शिकार के चलते वे लगभग विलुप्त हो गर्इं थीं। व्हेल और सील की संख्या में कमी आने की वजह से क्रिल नामक एक क्रस्टेशियन जंतु की संख्या काफी बढ़ गई थी, जो उनका भोजन है। और अब, मानव गतिविधियों चलते तेज़ी से हो रहा जलवायु परिवर्तन सीधे-सीधे अंटार्कटिका के जीवन को प्रभावित कर रहा है। इस संदर्भ में प्रोसीडिंग्स ऑफ दी नेशनल एकेडमी ऑफ साइंसेस में प्रकाशित अध्ययन कहता है कि जलवायु परिवर्तन से पेंगुइन की दो प्रजातियां विपरीत तरह से प्रभावित हुई हैं: पेंगुइन की एक प्रजाति की संख्या में काफी वृद्धि हुई है, वहीं दूसरी प्रजाति विलुप्ति की कगार पर पहुंच चुकी है।

दरअसल, लुइसिआना स्टेट युनिवर्सिटी के माइकल पोलिटो और उनके साथी अपने अध्ययन में यह देखना चाहते थे कि पिछली एक सदी में अंटार्कटिका की पारिस्थितिकी में हुए मानव हस्तक्षेप के कारण पेंगुइन के मुख्य भोजन, अंटार्कटिका क्रिल, की संख्या किस तरह प्रभावित हुई है। चूंकि मानवों ने कभी पेंगुइन का व्यावसायिक स्तर पर आखेट नहीं किया और क्रिल पेंगुइन का मुख्य भोजन हैं इसलिए उन्होंने पेंगुइन के आहार में बदलाव से क्रिल की आबादी का हिसाब लगाने का सोचा। और, चूंकि अंटार्कटिका में पिछले 50 सालों में गेन्टू पेंगुइन (पाएगोसेलिस पेपुआ) की आबादी में लगभग 6 गुना वृद्धि दिखी है और चिनस्ट्रेप पेंगुइन (पाएगोसेलिस अंटार्कटिका) की आबादी में काफी कमी दिखी है इसलिए अध्ययन के लिए शोधकर्ताओं ने इन दोनों प्रजातियों को चुना। पिछली एक सदी के दौरान इन पेंगुइन का आहार कैसा था यह जानने के लिए अध्ययनकर्ताओं ने म्यूज़ियम में रखे पेंगुइन के पंखों में अमीनो अम्लों में नाइट्रोजन के स्थिर समस्थानिकों की मात्रा पता लगाई।

उन्होंने पाया कि शुरुआत में, 1900 के दशक में, जब क्रिल प्रचुर मात्रा में उपलब्ध थे तो दोनों ही प्रजाति का मुख्य आहार क्रिल थे। लेकिन लगभग पिछले 50 सालों में, तेज़ी से बदलती जलवायु के चलते समुद्र जल के बढ़ते तापमान और बर्फ-आच्छादन में कमी से क्रिल की संख्या में काफी कमी हुई। तब गेन्टू पेंगुइन ने अपना आहार सिर्फ क्रिल तक सीमित ना रखकर मछली और श्रिम्प को भी आहार में शामिल कर लिया। लिहाज़ा वे फलती-फूलती रहीं। दूसरी ओर, चिनस्ट्रेप पेंगुइन ने अपने आहार में कोई परिवर्तन नहीं किया और विलुप्ति की कगार पर पहुंच गर्इं। शोधकर्ताओं का कहना है कि पेंगुइन का यह व्यवहार दर्शाता है कि विशिष्ट आहार पर निर्भर प्रजातियां जैसे चिनस्ट्रेप पेंगुइन पर्यावरणीय बदलाव के प्रभाव की चपेट में अधिक हैं और अतीत में हुए आखेट और हालिया जलवायु परिवर्तन ने अंटार्कटिक समुद्री खाद्य शृंखला को प्रभावित किया है। पिछले कुछ सालों में व्हेल और सील की आबादी में सुधार देखा गया है और यह देखना रोचक होगा कि इसका पेंगुइन की उक्त दो प्रजातियों पर कैसा असर होता है। (स्रोत फीचर्स)
नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRRwSJ0lSkYHgiyvM8u2JT-MbqHdfaPCZMQcGQvONirdocD_Dd9

बिना भोजन के जीवित एक सूक्ष्मजीव

सिंथेटिक जीव विज्ञानियों ने हाल ही में जेनेटिक इंजीनियरिंग की मदद से एक ऐसा जीवाणु तैयार किया है जो पेड़-पौधों की तरह हवा से कार्बन डाईऑक्साइड लेकर अपनी कोशिकाओं का निर्माण करता है। इसके आधार ऐसे सूक्ष्मजीव तैयार किए जा सकते हैं जो कार्बन डाईऑक्साइड का उपयोग करके दवाइयों और अन्य उपयोगी यौगिकों का निर्माण कर सकेंगे। जीव वैज्ञानिकों के अनुसार सभी जीवों को दो श्रेणियों में बांटा जा सकता है: स्वपोषी, जो प्रकाश संश्लेषण के ज़रिए अपनी कोशिकाओं का निर्माण करते हैं और परपोषी, जो बाहर से मिलने वाले भोजन के भरोसे रहते हैं।  

सिंथेटिक जीव विज्ञानी लंबे समय से ऐसे पौधे और स्वपोषी बैक्टीरिया बनाने की कोशिश कर रहे हैं जो पानी और कार्बन डाईऑक्साइड की मदद से मूल्यवान रसायन और र्इंधन का उत्पादन सकें। अन्य तरीकों की अपेक्षा यह तरीका सस्ता है। अभी तक हमारी आंत में पाए जाने वाले परपोषी बैक्टीरिया ई.कोली को ही एथेनॉल और अन्य वांछित उत्पाद बनाने के लिए तैयार किया जा सका है। लेकिन इन्हें शर्करा की खुराक चाहिए।     

इस्राइल स्थित वाइज़मैन इंस्टिट्यूट ऑफ साइंस के सिंथेटिक जीव विज्ञानी रॉन मिलो और उनके सहयोगियों ने ई. कोली को स्वपोषी में बदलने के लिए इस बैक्टीरिया के चयापचय के दो हिस्सों को फिर से तैयार किया: उसकी ऊर्जा प्राप्त करने की विधि और उसका कार्बन का स्रोत।    

शोधकर्ता सूक्ष्मजीव को प्रकाश संश्लेषण की क्षमता तो प्रदान नहीं कर पाए लेकिन वे एक ऐसे एंज़ाइम का जीन डालने में कामयाब रहे जिससे बैक्टीरिया सबसे सरल कार्बन यौगिक फॉर्मेट को पचाने में सक्षम हो गया। यह सूक्ष्मजीव इसके बाद फॉर्मेट को ATP में बदल देता है जो कोशिकाओं के लिए ऊर्जा का काम करता है। ऊर्जा के इस स्रोत के साथ सूक्ष्मजीव में तीन नए एंज़ाइम जोड़े जा सके जो कार्बन डाईऑक्साइड को शर्करा और अन्य कार्बनिक अणुओं का उत्पादन करने में समर्थ बनाते हैं। शोधकर्ताओं ने चयापचय में भूमिका निभाने वाले कई अन्य एंजाइम को नष्ट कर दिया ताकि बैक्टीरिया इस नए तरीके पर ही निर्भर हो जाए।       

हालांकि, ये परिवर्तन शुरू में कारगर नहीं रहे क्योंकि शायद बैक्टीरिया पोषक पदार्थों को अपने पुराने ढंग से इस्तेमाल कर रहा था। इसके लिए शोधकर्ताओं ने परिवर्तित ई.कोली को नियंत्रित आहार पर रखा जिसमें ज़ायलोज़ नामक शर्करा के साथ फॉर्मेट और कार्बन डाईऑक्साइड थे। इससे सूक्ष्मजीवों को कम से कम जीवित रहने और प्रजनन करने की गुंजाइश मिली।

इससे विकास की प्रक्रिया शुरू हुई। जो बैक्टीरिया कम ज़ायलोज़ में जीवित रह पाते, वे ज़्यादा विभाजन करते। शोधकर्ताओं ने ज़ायलोज़ की मात्रा में लगातार कमी की। 300 दिन और सैकड़ों पीढ़ियों के बाद ज़ायलोज़ को बिलकुल ही खत्म कर दिया गया। केवल वही बैक्टीरिया बच गए जो स्वपोषी में तबदील हुए थे। सेल में प्रकाशित रिपोर्ट के अनुसार इन बैक्टीरिया ने 11 नए आनुवांशिक परिवर्तन हासिल किए जिन्होंने उन्हें स्वपोषी जीवन अपनाने में समर्थ बनाया। इससे पता चलता है कि जैव विकास कितना कारगर हो सकता है।   

पूर्व में वैज्ञानिकों ने ई.कोली को दवा वगैरह विभिन्न उपयोगी पदार्थ का उत्पादन करने में सक्षम बनाया है। यदि यही काम स्वपोषी ई.कोली से करवाया जा सके तो वे हवा और सौर उर्जा से निर्मित फॉर्मेट से एथेनॉल, दवाइयां, र्इंधन वगैरह बनाने में मदद कर सकते हैं। (स्रोत फीचर्स)
नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcS8wNfsMIPPV_LOJJNQqVgo4hjkXYyC_ljhucwBhaTK2TRc0nl3